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Visual object recognition has been extensively studied under
fixation conditions, but our natural viewing involves frequent
saccadic eye movements that scan multiple local informative
features within an object (e.g., eyes and mouth in a face im-
age). Such visual exploration can facilitate object recognition,
but mechanistic accounts of the contribution of saccades are yet
to be established due to the presumed complexity of the inter-
actions between the visual and oculomotor systems. Here, we
present a framework for formulating object recognition as a
process of accumulating evidence from local features through
saccades to render a decision. This approach offers a sim-
ple model that quantitatively explains human face and object
categorization behavior, even under conditions in which peo-
ple freely make saccades to scan local features, departing from
past studies that required controlled eye movements to examine
trans-saccadic integration. Notably, our experimental results
showed that active saccade commands (efference copy) did not
substantially contribute to behavioral performance and that the
patterns of saccades were largely independent of the ongoing
decision-making processes. Therefore, we propose that object
recognition with saccades can be approximated using a parsi-
monious decision-making model without assuming complex in-
teractions between the visual and oculomotor systems.

Introduction
Object recognition is often studied as the process of extract-
ing object information from a static image, but during a nat-
ural visual experience, our visual system is bombarded with
frequent and drastic changes in the retinal image due to our
own eye movements. Saccadic eye movements, which oc-
cur on average 1-3 times per second (1), help us search for
and focus on an important object in a visual scene by shifting
the center of gaze from one object to another (2). However,
even when looking at a single object, we often make saccades
within the object to scan multiple local features. For example,
in classic demonstrations of human eye tracking by A. Yarbus
(1967), people viewing a face made frequent saccades across
key facial features such as eyes and mouth.

A number of studies since then have investigated eye
movement patterns during object viewing (4–6) and have
suggested the importance of saccades in face and object
recognition (5–7). People fixate on the most informative re-
gion of an image during face recognition (8, 9) and adopt dif-
ferent saccade patterns depending on task demands (5, 6, 10).
Limiting saccades or the number of fixations impairs ob-
ject recognition and learning performance (11–13). However,

mechanistic explanations for how eye movements may con-
tribute to object vision remain elusive. It could be hypothe-
sized that saccades enable the visual system to gather and in-
tegrate information from multiple object features. Visual in-
tegration across saccades (i.e., trans-saccadic integration) has
indeed been demonstrated in studies using simplified stimuli
such as Gabor orientation (14, 15), colored patches (16), or
simple shapes (17–20). These studies have shown that hu-
mans integrate the same visual feature viewed at the fovea
and periphery across a saccade (21). However, little is known
about how information is integrated across saccades during
more complex object recognition (but see extensive works on
reading; Rayner (1998)). Unlike the trans-saccadic integra-
tion of simple visual features, saccades during object viewing
bring different object features into the fovea, potentially re-
quiring different computations.

On the other hand, existing neural and computational in-
vestigations of object recognition often focus on fast feedfor-
ward visual processing that occurs within 100-300 ms (25)
and are therefore prone to preclude experimental conditions
that involve saccades. However, whereas object recognition
can be fast for unambiguous images, difficult discrimination
during natural vision (e.g., identifying a person in fog or
dim light) can take much longer than that required for feed-
forward visual processing (26). Saccades during prolonged
viewing would lead to large and rapid changes in the reti-
nal image and may recruit additional neural processes miss-
ing in existing object vision models, such as combining vi-
sual inputs with efference copy from the oculomotor system
(27, 28). Furthermore, the oculomotor system may rely on in-
formation from the visual system to coordinate saccade plans
(29, 30). The possibility of such complex interactions has
rarely been considered in existing models of object vision
(31), thus raising a question as to how these models general-
ize to natural visual experiences.

Here, we develop a quantitative framework for measuring
and modeling object recognition behavior with saccades. Our
key innovation is to employ a theory of perceptual decision
making (32) and consider object recognition behavior as a
process of accumulating sensory evidence over time to com-
mit to a choice (26, 33–35). Using behavioral paradigms with
parametrically controlled object and face stimuli, we demon-
strate that a simple model that accumulates evidence of local
visual features across saccades is sufficient to quantitatively
account for participants’ object categorization behavior even
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Fig. 1. Object categorization task with free saccades (A) Participants were assigned to perform either facial identity, expression, or car categorization
(n = 9). In each trial, participants viewed a stimulus chosen from a morph continuum ranging from -100 to 100% morph levels between two prototype
images. Participants were then required to report which prototype the stimulus was closer to. We defined two informative features (red and blue contour
lines) and morphed images inside these two regions. The face images were from the Nim Face set (23) and the Tsinghua Facial Expression Database
(24) and presented with permission. The same face images were used in the subsequent figures. (B) Participants began each trial by fixating on a
red dot that appeared at one of six possible locations on the screen. Shortly afterward, a stimulus appeared, and participants were required to make
a saccade to the stimulus. Thereafter, participants could view any part of the image until they reported the stimulus category by pressing one of two
buttons as soon as they were ready (reaction-time task). During stimulus viewing, the morph levels of the two informative features fluctuated randomly
every 106.7 ms, while their mean was maintained constant within a trial (SD: 20%). This fluctuation allowed us to examine the weighting of each feature
during decision making. (C) Participants showed stereotypical psychometric and chronometric curves as a function of the mean morph levels. Lines
represent logistic and hyperbolic tangent fits for psychometric and chronometric functions, respectively (Eq. 1 and 2). Plots for each participant are
shown in Supplementary Fig. 2.

when they view an image freely. Notably, we found that par-
ticipants’ behavioral performance was minimally affected by
the efference copy of oculomotor signals and that the pat-
terns of saccades lacked apparent influences from ongoing
decision-making states. We conclude that object recogni-
tion with saccades can be approximated by a parsimonious
model that accumulates available sensory evidence from dy-
namic retinal images without assuming complex interactions
between the visual and oculomotor systems under controlled
conditions in which trained participants repeatedly categorize
objects.

Results

Saccadic sampling of local features during object
recognition
We designed an object categorization task in which partici-
pants freely made eye movements inside a stimulus to report
its category. We assigned participants to perform either fa-
cial identity categorization, facial expression categorization,
or car categorization (Fig. 1A) and aimed to reveal the be-
havioral patterns common to these three conditions. A stim-
ulus in each trial was sampled from a morph continuum of
two prototype images (e.g., two facial identities in the iden-
tity categorization, which corresponded to -100 and 100%
morph; Fig. 1A and Supplementary Fig. 1A), and the par-
ticipants were asked to report which prototype category the
stimulus was closer to. Before stimulus onset, participants
were required to look at a fixation point whose position was
randomly selected from six possible peripheral locations (8

- 11.5° away from the monitor center; Fig. 1B). Following
stimulus onset, the participants had to immediately make a
saccade to the stimulus and could then look at any part inside
it. They subsequently reported their decisions by pressing a
button as soon as they were ready (reaction-time task; Fig.
1B). Reaction times (RTs) were defined as the time between
the fixation on the stimulus and the button press.

To assess how participants sampled the local features dur-
ing decision making, we defined two informative features for
each stimulus set (eyes and mouth in the face sets; front and
rear parts in the car set; Fig. 1A) and added random fluc-
tuations to their morph levels every 106.7 ms (eight monitor
frames) during stimulus presentation (Fig. 1B inset; fluctu-
ation SD, 20% morph). The mean morph levels of the two
features were maintained identical and constant within each
trial. The morph level outside of the two features was always
set to 0% and remained uninformative. This design allowed
us to use psychophysical reverse correlation (26, 33, 36) and
test how each feature at each moment during stimulus view-
ing influenced the participants’ decisions. Two features were
sufficiently separated for saccades to be made between them
(inter-feature distance, 5°), and at the same time, the image
sizes were within the range of naturalistic viewing conditions
(37).

We first confirmed that the participants showed stereotyp-
ical choice accuracy and RTs under the three stimulus con-
ditions (Fig. 1C). Hereafter, we focus on the results qual-
itatively consistent across the three conditions and present
the results either individually or averaged across conditions
depending on the purpose of visualization (where averaged
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Fig. 2. Participants made frequent saccades to sample two informative features (A) Scatter plots of the first fixation positions after stimulus onset
show a concentration just below the eyes in the face tasks and the rear part in the car task. The blue dots represent individual trials from a representative
participant. Plots for each participant are shown in Supplementary Fig. 3A. (B) Density plots of the fixated positions during the entire stimulus viewing
period show that the participants primarily fixated around the two informative features. The plots shown are from representative participants; plots for
all the participants can be found in Supplementary Fig. 3B. (C) Example saccades spanning the two informative features. Plots for each participant are
shown in Supplementary Fig. 3C. (D) Distribution of saccade counts per trial. The trials were aggregated across participants. Plots for each participant
are shown in Supplementary Fig. 4. (E) The distribution of saccade amplitudes revealed two peaks. The peak with larger amplitudes corresponded
to the saccades spanning the two features (cross-feature saccades; see Methods for its definition). (F) Participants made at most two cross-feature
saccades in most of the trials. (G) Distribution of the timings of cross-feature saccades. (H) Consistent with the frequent fixations on the two features,
psychophysical reverse correlation (Eq. 6) revealed positive influences of both features on participants’ decisions. Error bars indicate S.E.M. across
participants.

results are presented, individual results are shown in the Sup-
plementary Figures). In all conditions, choice accuracy was
monotonically modulated by the morph level (logistic re-
gression slope α1 = 13.7 ± 1.2, mean ± S.E.M. across par-
ticipants, Eq. 1; t(8) = 11, p = 4.0 × 10−6, two-tailed t-
test). RTs were systematically longer for lower morph lev-
els (β1 = 7.14 ± 0.52 fitted to a hyperbolic tangent func-
tion, Eq. 2; t(8) = 14, p = 7.5 × 10−7, two-tailed t-test).
These patterns are consistent with many previous behavioral
results of perceptual tasks (32) and thus suggest that decision-
making models similar to those previously proposed, such as
bounded evidence accumulation (26), can explain our results.

While performing the task, participants showed rich fixa-
tion patterns (Fig. 2). Immediately following stimulus on-

set, their fixations tended to land just below the eyes in the
face categorization tasks (Fig. 2A left and middle), which is
consistent with previous studies that investigated fixation pat-
terns during face recognition (8). For expression categoriza-
tion, landing positions appeared slightly closer to the nose
(Fig. 2A middle), which also agrees with previous reports
(8). For car categorization, the participants’ initial fixation
landed on the rear region in most trials. Following this ini-
tial fixation, participants often made multiple saccades (Fig.
2D), and their fixation positions were dispersed during de-
cision formation. The density of fixation positions during
the full stimulus duration revealed a concentration around
the two informative features (Fig. 2B). For identity and car
categorization, the density plots exhibited two distinct peaks
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corresponding to the two features. For expression categoriza-
tion, the two peaks were less distinct but still covered the two
features. These patterns were qualitatively similar across the
participants (Supplementary Fig. 3A, B).

The distinct peaks in the density plots resulted from fre-
quent saccades between the informative features. We plot-
ted the distribution of saccade amplitudes and identified two
peaks (Fig. 2E), one corresponding to small saccades within
local features and the other to larger saccades spanning across
features. We were particularly interested in larger saccades as
they lead to large changes in the retinal image and can con-
tribute to the integration of sensory information across distant
features. We therefore extracted these “cross-feature” sac-
cades and focused our analysis on their effects on decision-
making behavior in the following sections. In brief, we de-
fined saccades as cross-features if their start and end points
were near the two features and their amplitudes were greater
than two degrees (see Methods for more details). Examples
of the start and end points of these saccades are shown in
Fig. 2C. These cross-feature saccades occurred on average
1.02 ± 0.12 times per trial (Fig. 2F) and appeared to be pe-
riodic with an average interval of ∼400 ms (Fig. 2G). We
did not consider saccades spanning the left and right eyes as
cross-features because the two eyes had the same morph level
and did not provide distinct information in our stimuli. The
influence of smaller saccades on decision making is shown in
Supplementary Fig. 5A.

As expected from the frequent saccades between the two
features, we observed that participants relied on both of them
to judge the stimulus categories. We performed psychophysi-
cal reverse correlation (26, 33, 36), in which we averaged the
fluctuations of morph levels of each feature during the par-
ticipants’ viewing of the feature in each trial and computed
the difference in the average fluctuations between the trials
in which participants chose Category 1 and Category 2 (Eq.
6 in Methods). The amplitudes of the resulting psychophys-
ical kernels quantified the extent to which the fluctuations
influenced the participants’ choices (Fig. 2H). The kernels
were positive for both features in all the tasks (t(8) = 7.1,
p = 9.9 × 10−5 for the feature weighted less by each partici-
pant, t(8) = 16, p = 2.8×10−7 for the feature weighted more,
two-tailed paired t-test), while the amplitudes often differed
between the features such as higher values for mouth than
for eyes in the expression task (Fig. 2H). However, such a
difference in feature weighting may depend on our choice of
prototype stimuli and is not the focus of the current study.
Rather, the key observation was that both features were used
to solve the task, providing a basis for investigating whether
and how eye movements were involved in gathering evidence
from distant features.

Both features fixated before and after saccades con-
tribute to decisions

Having extracted the cross-feature saccades, we now address
one of our main questions: whether and how the information
of local object features is integrated across these saccades.
Many previous studies have demonstrated the trans-saccadic

integration of simple visual stimuli (e.g., grating or color
patch) seen at the fovea and periphery (14–17, 21, 38, 39).
However, object recognition poses a different challenge be-
cause participants see different features across saccades. To
our knowledge, there have been no empirical examinations
of whether and how evidence from multiple features of an
object image is integrated across saccades.

To address this question, we leveraged our stochastic stim-
uli and first tested whether the morph fluctuations of the fea-
tures fixated on before and after each saccade correlated with
participants’ choices regardless of the features being fixated
on. We averaged the morph fluctuations of the fixated fea-
tures between saccades (Fig. 3A) and plotted the partici-
pants’ choice performance as a function of these morph levels
(Fig. 3B, C). In the trials with one cross-feature saccade, this
became a two-dimensional (2D) psychometric function (Fig.
3B). The plot displayed prominent diagonal iso-performance
contours, indicating that both features before and after a sac-
cade influenced the participants’ decisions. Fitting a logistic
function (Eq. 4) to this pattern revealed significant weights
for both pre-saccade (t(8) = 7.15, p = 9.7×10−5, two-tailed
t-test across participants) and post-saccade features (t(8) =
6.24, p = 2.5 × 10−4, two-tailed t-test) without a significant
interaction term (t(8) = −0.39, p = 0.70, two-tailed t-test).
Likewise, we analyzed the trials with two cross-feature sac-
cades and confirmed that the morph levels of the features fix-
ated during the first, second, and third fixation periods all
correlated with the participants’ choices (Fig. 3C; first pe-
riod: t(8) = 3.66, p = 0.0064, second period: t(8) = 9.13,
p = 1.7 × 10−5, third period: t(8) = 4.57, p = 0.0018, inter-
actions: p > 0.09, two-tailed t-test; Eq. 5). Thus, the par-
ticipants relied on information both before and after saccades
to make their decisions. In the next section, we show that
these results indicate the integration of evidence rather than
random reliance on features before or after saccades.

We then used psychophysical reverse correlation to quan-
tify the temporal dynamics of feature weighting and found
a persistent contribution of fixated features across saccades.
We computed the psychophysical kernels over time by cal-
culating the difference in stimulus fluctuations at each time
point between the trials in which the participants chose Cat-
egory 1 and Category 2 (Eq. 6). The resulting kernels re-
vealed rich temporal dynamics (Fig. 3E) and, importantly,
had positive weights throughout the stimulus presentation
when the feature was fixated (Fig. 3E; “pre” and “post” fea-
tures indicate the features fixated before and after a saccade,
see Fig. 3D). When aligned to stimulus onset, the kernels
tended to gradually decrease over time. Around the time of
cross-feature saccades, the amplitudes of the pre- and post-
saccade features were swapped. Because the temporal res-
olution of our stimulus fluctuations was ∼100 ms, we did
not analyze further details of temporal dynamics around sac-
cades (cf. (15); but see Supplementary Fig. 5B for kernels
plotted with a higher temporal resolution). When aligned to
the time of the participants’ choice, we observed a charac-
teristic peak abound 400-500 ms before the choice (Fig. 3E
right). As demonstrated in the next section, these complex
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Fig. 3. Both features fixated before and after saccades contribute to decisions (A) We extracted the morph levels of the fixated feature (solid lines)
at different fixation epochs split by cross-feature saccades and averaged them in each trial for the analysis in B and C. The panel shows an example
trial, in which a participant first fixated on feature 1, made a saccade to feature 2, and then fixated back on feature 1. (B, C) 2D psychometric functions
based on the average morph level of each fixation epoch. The lines are diagonal, indicating that both features fixated across saccades influenced
participants’ choices in the trials with one cross-feature saccade (B) and with two cross-feature saccades (C). (D) To quantify the temporal weighting of
features across saccades, we performed psychophysical reverse correlation (Eq. 6) using the morph fluctuations of the features fixated before and after
cross-feature saccades. The schematic shows an example of one-saccade trials. The trials with more saccades are also included in the analysis (see
Methods). (E) Psychophysical kernels indicate continuous influences of fixated features on participants’ decisions. Their rich temporal dynamics can
be explained by a simple evidence accumulation model (see Fig. 4). Shading indicates S.E.M. across participants. (F) Schematic for the analysis in G.
To examine spatial integration, we sorted the morph fluctuations based on the distance to each feature from participants’ gaze position. The distance
was calculated from a contour line manually circumscribing each feature (Supplementary Fig. 1B; see Methods). (G) The amplitudes of psychophysical
kernels decreased largely monotonically as a function of the distance to the features from the gaze position.

kernel dynamics can be explained quantitatively using a sim-
ple evidence accumulation model.

Psychophysical reverse correlations could also be used to
quantify the spatial integration of sensory evidence. Instead
of sorting stimulus fluctuations over time, we sorted the same
data according to the visual distance between the partici-
pant’s gaze position and each feature at each time point (Fig.
3F; see Methods for the definition of distance). The result-
ing kernels revealed a largely monotonic reduction as a func-
tion of distance (Fig. 3G) with some variability across the
stimulus conditions. In the identity and car tasks, kernel am-
plitudes decreased sharply with distance, whereas they were
much flatter in the expression task. Consistent with this find-
ing, another line of analysis (Supplementary Fig. 8A, B) con-
firmed that the influence of unfixated features was markedly
greater on the expression task. Thus, the extent of the spa-
tial window for integration can be either stimulus- or task-
dependent (see Discussion). Nonetheless, the influence of
the features can still be described as a monotonic function of
the visual distance from the features in all tasks.

Across-saccade evidence accumulation accounts for
behavior
Encouraged by our observation of the positive influence of
features fixated on before and after saccades, we formally
tested the integration of evidence across saccades by fitting
an evidence accumulation model to the behavioral data. Pre-
vious studies have shown that face categorization behavior

during fixation conditions could be explained using a simple
model that computes the weighted sum of evidence from each
facial feature and accumulates this sum over time (26, 33).
We extended this model by incorporating participants’ eye
movements such that the model kept accumulating evidence
across saccades, but the informativeness of each feature de-
pended on the gaze position (40).

Our model integrates fluctuating sensory evidence from
object features (e.g., eyes and mouth in face tasks) and ac-
cumulates evidence over time across saccades to form a deci-
sion variable (Fig. 4A). Each feature has a different strength
of evidence (sensitivity parameter ki in Eq. 10), which de-
cays as a function of the distance between the feature and the
participant’s gaze position at each time point (decay rate λ in
Eq. 10). Decay was modeled using an exponential function
based on previous studies (8, 41), but other monotonic func-
tions could similarly fit the data (Supplementary Fig. 7B).
Aside from this decay, we did not assume any component
in the model that depended on eye positions and saccades.
When the decision variable reaches an upper or lower bound,
the model makes a choice associated with the bound after a
non-decision time that accounts for sensory and motor de-
lays.

This simple extension of an evidence accumulation model
accounted for all aspects of the behavioral data examined.
The model accurately fitted choices, mean RTs, and the dis-
tributions of RTs (Fig. 4B, C; R2 = 0.83 ± 0.028). Fur-
thermore, it quantitatively accounted for the patterns of psy-
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Fig. 4. Across-saccade evidence accumulation model explains the behavioral results (A) Our main model accumulates evidence throughout
stimulus presentation across saccades until the accumulated evidence (decision variable) reaches a bound. The choice associated with the crossed
bound is made after a non-decision time. Momentary evidence is computed as a linear sum of the morph levels of the two features with their weights
as free parameters (k1 and k2), which are modulated by the distances to the features from the gaze position at each moment (blue inset). (B, C,
D) The model quantitatively accounts for choices, mean reaction times (RTs), RT distributions (the panel includes the trials of all morph levels), and
psychophysical kernels. Plots for individual participants are shown in Supplementary Fig. 6. (E, F) If the weights for the features in the model are fixed
regardless of the gaze positions (E), the amplitudes of fixated and unfixated kernels become similar, deviating from the data (F). ∆BIC indicates the
difference in fit performance relative to the main model (positive values indicate poorer fits). (G, H) A model that resets evidence accumulation after
saccades (G) fails to account for the amplitudes of data kernels before saccades (H). (I, J) Alternatively, if a model accumulates evidence independently
for each feature and makes a decision based on one of the features (the feature either chosen randomly or based on the magnitude of evidence) (I), it
fails to explain the amplitudes of data kernels aligned to the timing of behavioral responses (J).

chophysical kernels aligned to all of the time epochs (Fig.
4D; R2 = 0.51 ± 0.074). The dynamics of kernels observed
in the data can be accounted for by the mechanistic compo-
nents of evidence accumulation (26, 33). The model explains
the decreasing kernels aligned to stimulus onset because there
is a temporal gap between the bound crossing and the report
of a decision (i.e., the non-decision time), making a later por-
tion of the stimulus fluctuations irrelevant to the decision. Be-
cause the timing of the bound crossing varies across trials, the
model predicts a gradual reduction in the effect of stimulus
fluctuations over time. The peak of the kernels aligned to the
behavioral responses corresponded to the moment of cross-
ing a decision bound in the model. At that moment, even
tiny stimulus fluctuations bring the decision variable beyond
a bound and dictate the decision, leading to the large kernel

amplitudes. Subsequently, the kernels sharply drop to zero
because of the non-decision time. When aligned to the time
of saccades, the amplitudes of the kernels swapped between
the pre- and post-saccade features because of the change in
sensory sensitivity caused by the distance between the fea-
tures and the gaze location.

We further confirmed that no other model accounted for
the behavioral data without assuming gaze-dependent ev-
idence accumulation. First, we tested a model that did
not consider gaze position but accumulated evidence from
two informative features with constant sensory sensitivity
over time (Fig. 4E). This gaze-independent model could fit
choices and RTs (Supplementary Fig. 7C) but clearly failed
to explain the differences in the amplitudes of psychophysi-
cal kernels between fixated and unfixated features (Fig. 4F).
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The model kernels showed slight differences between fixated
and unfixated features because participants tended to fixate
on features with higher sensitivity more frequently, but the
differences were far smaller than those observed in the actual
data.

Second, we considered a model that did not integrate ev-
idence across saccades. One plausible scenario is that par-
ticipants restarted evidence accumulation after each saccade
(Fig. 4G); if a decision could not be made based on one fea-
ture, they switched their focus to the other feature and made
a decision based on it. This model could also fit choices and
RTs (Supplementary Fig. 7D), but, as expected, failed to
explain the amplitude of psychophysical kernels before sac-
cades (Fig. 4H). The model kernels before saccades were
slightly positive owing to the inclusion of trials without sac-
cades, but they were much smaller than the data.

Finally, we ruled out a hypothesis that participants relied
on either feature before or after saccades to render a deci-
sion but did not integrate evidence across saccades (Fig. 4I).
This independent accumulator model computed the total sum
of evidence for each feature while viewing that feature and
then committed to a choice using the evidence from one of
the features at the moment of the decision. One variant of
this model chose a feature randomly, with the probability of
choosing the last fixed feature as a free parameter (Fig. 4J,
Supplementary Fig. 7E). Another variant chose the feature
with a higher magnitude of evidence at the moment of the
decision (Supplementary Fig. 7F). Because both features be-
fore and after saccades could contribute to decisions in differ-
ent trials, the kernels of these models had positive amplitudes
throughout the stimulus presentation (Fig. 4J). However, the
model kernels had a smaller peak aligned to the participants’
responses because the bound crossed during the last fixed fea-
ture did not always dictate the decisions. This contrasts with
our main model, in which the crossed bound always corre-
sponded to the model’s decisions. Our data clearly favor the
main model.

Overall, we found that a simple mechanism that accumu-
lates sensory evidence across saccades is sufficient to account
for the participants’ object categorization behavior. Eye posi-
tion information was required in the model to explain the de-
crease in sensitivity to features as a function of visual eccen-
tricity; however, aside from that, we did not need to model the
complex interactions between eye movements and the object-
recognition process. While these results cannot prove the ab-
sence of such interactions, our results in the next section also
support the idea that the interactions of the visual and oculo-
motor systems do not play a substantial role in the types of
object recognition behavior we examined.

Active saccade commands are unnecessary for fea-
ture integration

The observed integration of evidence across saccades could
have depended on neural processes that combine visual sig-
nals and active saccade commands (i.e., efference copy), such
as the predictive coding of visual features prior to saccades.
To examine the extent of the contribution of efference copy,

we next designed a “guided-saccade” task that could compare
object recognition performances between conditions with
and without saccades (Fig. 5A). This task used the same ob-
ject stimuli as in the free saccade task, but we strictly con-
trolled the participants’ eye movement and stimulus presen-
tation. In the saccade condition, participants were explicitly
instructed to make cross-feature saccades during object cat-
egorization (Fig. 5B). In the no-saccade condition, partici-
pants maintained fixation while there was a sudden change in
the visual display, mimicking the change caused by saccades
(Fig. 5E).

The saccade and no-saccade conditions had almost identi-
cal trial structures and stimulus durations. In each trial, a fixa-
tion point was initially placed at the center of one of the infor-
mative features of the stimulus. In the saccade condition, the
fixation point moved to the location of the other informative
feature immediately following the stimulus onset (Fig. 5B).
The participants were required to make a saccade following
this jump of the fixation point. The saccade was followed by
another stimulus period (∼200 ms), and the participants re-
ported their decisions by pressing a button after the stimulus
was extinguished. In the no-saccade condition, the stimulus
position suddenly shifted from one region to another, while
the fixation point stayed the same, and the participants had to
maintain fixation (Fig. 5E). The duration of the first stimulus
and the blank between the two displays were set according to
each participant’s saccade latency (170.0 ms ± 5.3 ms) and
duration (53.5 ms ± 1.3ms) in the saccade condition; thus
both the spatial and temporal profiles of stimuli were approx-
imately matched between the two conditions. Each of the
two conditions had trials where a stimulus was shown both
before and after a saccade/stimulus jump (“Both” trials; Fig.
5B, E left) and trials where a stimulus was shown only before
or after (“Pre only” and “Post only” trials; Fig. 5B, E right).

In the saccade condition, we confirmed that participants
integrated evidence across a saccade. Their behavioral ac-
curacy was significantly higher when an image was present
across a saccade (“Both” trials) than when it was present only
before or after a saccade (Fig. 5C; the difference in logistic
slope α2 = 1.69±0.36, Eq. 3; t(8) = 4.75, p = 0.0014, two-
tailed t-test). The improvement in performance was subtle
but consistent with the near-optimal integration of evidence
(Supplementary Fig. 9), in line with prior studies that exam-
ined the saccadic integration of simpler features (14). Similar
to the free-saccade task, we also identified positive kernels
for the fixated feature both before and after a saccade (Fig.
5D; before saccade t(8) = 6.41, p = 2.1 × 10−4, after sac-
cade t(8) = 10.8, p = 4.8×10−6, two-tailed t-test).

Critically, higher performance for the “Both” trials was
also observed in the no-saccade condition, supporting evi-
dence integration (Fig. 5F; the difference in logistic slope
α2 = 2.01 ± 0.39, Eq. 3; t(8) = 5.12, p = 9.1 × 10−4, two-
tailed t-test). In support of this, we also identified the pos-
itive kernels for the fixated features both before and after a
saccade in the no-saccade condition (Fig. 5G; before sac-
cade t(8) = 9.69, p = 1.1 × 10−5, after saccade t(8) = 7.97,
p = 4.5 × 10−5, two-tailed t-test). The size of the perfor-
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Fig. 5. Guided-saccade task revealed a minimum influence of efference copy on feature integration (A) In this task, participants were asked
to look at the red fixation dot, which moved from the position of one feature to the other in the saccade condition (B). After the saccade, the stimulus
was extinguished in ∼200 ms, and participants reported their choice by pressing a button. As in the free saccade task, morph levels fluctuated every
∼100 ms (inset). Each participant was assigned to perform either identity, expression, or car categorization (n = 9). (B, E) We compared the saccade
condition (B) with the non-saccade condition (E), in which the fixation point stayed at the same position, but the stimulus jumped, mimicking the visual
display in the saccade condition. The stimulus duration was matched between the conditions within each participant (see Methods). To quantify the
integration of evidence across saccades, we also had trials in which a stimulus was shown only before (“Pre only”) or after (“Post only”) the saccade
or stimulus jump event. (C, F) Whether or not participants made a saccade, their performance improved when a stimulus was shown in both epochs.
Error bars denoting S.E.M. across participants were smaller than the data points. (D, G) Psychophysical kernels in the “both” condition showed positive
influences of the fixated features before and after a saccade or stimulus jump, consistent with evidence integration. The data of individual participants
are shown in Supplementary Fig. 9.

mance improvement was statistically indistinguishable from
the saccade condition (α2 = 0.32±0.50, Eq. 3; t(8) = −0.64,
p = 0.54, BF10 = 0.38, two-tailed t-test). One potential dif-
ference we noted was that the kernel for the unfixated feature
before a saccade looked slightly higher in the saccade con-
dition than in the no-saccade condition, which may indicate
pre-saccadic enhancement in visual sensitivity (42), but this
difference was also statistically indistinguishable (Fig. 5D,
G; t(8) = −1.71, p = 0.13, BF10 = 0.93, two-tailed t-test).
Thus, the results indicate that saccade commands are not a
prerequisite for feature integration and do not substantially
improve behavioral performance even if they are effective
(see Discussion for the interpretation).

Saccades are minimally influenced by ongoing deci-
sion formation
Thus far, we have shown that oculomotor signals do not sub-
stantially contribute to perceptual decision making, but it is
possible that the ongoing decision-making process influences
oculomotor signals. One plausible scenario is that uncer-
tainty in ongoing decisions affects the frequency of saccades.
For example, if the currently fixated feature is uninforma-
tive, people may make more frequent saccades for the other
feature. If so, there could be a correlation between stimu-
lus difficulty and saccadic frequency. We used the behavioral
data collected in the free saccade task (Fig. 1) to examine this
idea.

Contrary to our expectations, we did not find any signif-
icant relationship between stimulus difficulty and saccade
frequency. The average number of cross-feature and other
saccades in each trial was clearly higher in more difficult

trials (Fig. 6A), but this did not indicate more frequent
saccades because the trial duration (i.e., reaction time) was
longer in difficult trials (Fig. 1C bottom). Therefore, the
frequency of saccades per time had to be estimated, but the
calculation requires greater complexity than a simple divi-
sion of the number of saccades by the trial duration, as sac-
cades tend to be periodic (Fig. 2G), and the calculation
strongly depends on the relative distributions of RTs and sac-
cade timing. Therefore, we matched the RT histograms of
different stimulus strengths by randomly subsampling trials.
After the RT matching, saccade frequency was not corre-
lated with stimulus difficulty (Fig. 6B; cross-feature sac-
cades: F(5,48) = 0.08, p = 0.995, BF01 = 9.26; all saccades:
F(5,48) = 0.1, p = 0.992, BF01 = 7.52, repeated-measures
one-way ANOVA).

We further devised an analysis to compare the probability
of saccades between easy and difficult trials without match-
ing RTs (Fig. 6C). This was important as RTs could be highly
correlated with participants’ subjective uncertainty (43) and
thus matching RTs could also align subjective uncertainty
across stimulus strengths. Instead, we calculated the proba-
bility of making a saccade at each time point using only trials
with RTs longer than the time point. As long as there were
a sufficient number of trials at each time point, this probabil-
ity should not be biased by the duration of the RTs follow-
ing each time point. We plotted this probability using either
all cross-feature saccades, the first cross-feature saccade in a
trial, or the second saccade in a trial, and did not find differ-
ences between easy and difficult trials (Fig. 6C top; split
by 20% morph boundary; p > 0.7, BF01 > 10, repeated-
measures two-way ANOVA). Including within-feature sac-
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Fig. 6. The frequency of saccades did not significantly depend on stimulus difficulty (A) The average number of saccades per trial was higher
for more difficult (low morph level) trials. Error bars indicate the S.E.M. across participants. But reaction times were also longer for these trials (see Fig.
1C). (B) When saccade frequency per time was calculated, it was not correlated with stimulus difficulty. To allow the unbiased estimation of saccade
frequency, we matched RT distributions across stimulus strength when calculating the frequency (see main text and Methods). Plots for each participant
are shown in Supplementary Fig. 10A. (C) Without matching RT distributions, we compared the probability of making a saccade at each time point by
dividing the count of trials with a saccade at that time point by the count of trials whose RTs were longer than that time. We compared this probability
between easy and difficult trials and found that they were statistically indistinguishable. Plots for each participant are shown in Supplementary Fig. 10B.
(D) Example saccade patterns in easy and difficult trials show no apparent difference between these two types of trials. These cross-feature saccades
were randomly selected from one participant’s data. (E) The amplitudes of cross-feature saccades were similar across a range of stimulus difficulties.
Error bars denoting S.E.M. across participants were smaller than the data points.

cades did not affect this result (Fig. 6C bottom; p > 0.5,
BF01 > 10, repeated-measures two-way ANOVA).

Overall, we found that saccade frequencies showed a min-
imum correlation with stimulus difficulty. In addition to
saccade frequencies, we compared the average amplitude of
cross-feature saccades between difficult and easy trials (Fig.
6D-E) but could not conclude whether it had a correlation
with stimulus difficulty (t(8) = 0.59, p = 0.57, BF01 = 2.70,
two-tailed t-test of the slope of linear regression). Thus, at
least the frequencies of saccades were stereotypical and min-
imally modulated by the state of ongoing decision making
under our experimental conditions in which the participants
repeatedly solved fully familiarized perceptual tasks.

Discussion

Humans often make saccades to sample local informative
features when viewing object images, but the mechanisms
by which saccades contribute to object recognition have yet

to be established. Studies on eye movements have proposed
complex interactions between the visual and oculomotor sys-
tems, such as predictive visual processing based on saccadic
commands (27), whereas studies on object recognition lean
toward eschewing this complexity and favor a briefly flashed
static image under fixation conditions (25). Here, we applied
a decision-making theory to reformulate the problem as the
accumulation of sensory evidence from multiple local fea-
tures across saccades. Our results indicate a parsimonious
relationship between eye movements and object recognition;
humans integrated evidence across saccades (Figs. 3, 4), but
behavioral performance did not strongly depend on active
saccade signals (Fig. 5), and saccade patterns were mini-
mally influenced by ongoing decision formation (Fig. 6). As
such, a simple evidence accumulation model that does not as-
sume complex interactions between the visual and oculomo-
tor systems can approximate decision-making behaviors. We
suspect that their interactions become apparently minimal,
especially when well-trained participants repeatedly perform
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these object categorization tasks.

Many prior studies have documented the integration of vi-
sual information across saccades (14–17, 21, 38, 39), but to
our knowledge, ours is the first attempt to apply a mechanis-
tic model grounded on evidence accumulation to account for
object recognition involving saccades. The accumulation of
evidence is common in many perceptual tasks (32), and some
may consider that our results were largely expected based on
these theories, but our key contribution was to demonstrate
that a decision-making framework can untangle the apparent
complexity of object vision and eye movements. Notably,
our models, in tandem with our experimental paradigm, al-
lowed us to examine the integration process during a free
viewing condition in which participants’ gaze locations and
times were unrestricted (Figs. 1, 2). This marks a depar-
ture from existing task designs that required strict controls
of eye movements and stimulus presentation to study inte-
gration (14, 15). Despite the unconstrained task design, our
model quantitatively accounted for various aspects of the par-
ticipants’ choice behavior (Fig. 4).

The apparent lack of necessity for efference copy (Fig. 5)
seemingly contradicts a large body of existing studies under-
scoring its role in visual perception (27, 28, 44, 45), but this
could stem from the fact that the demands for our tasks were
different. In conventional trans-saccadic perceptual tasks,
participants are required to judge a simple stimulus (e.g., the
orientation of a Gabor patch) initially viewed in the periph-
ery and subsequently foveated through a saccade (14–17).
Here, the remapping of receptive fields induced by oculo-
motor commands (27) could serve as a vehicle to fuse in-
formation across saccades (28, 44), although the necessity
of an efference copy is still debated even under this condition
(46, 47). In contrast, object images comprise multiple distinct
features. We believe that the integration of foveated features
across saccades is more important for improving behavioral
accuracy in this case, which may not require oculomotor in-
formation. It is also possible that our behavioral data did not
have sufficient statistical power to detect the effects of ocu-
lomotor signals on feature integration, but even if there is an
effect, its effect size must be limited according to our results.

We also found a minimal influence of ongoing decision
formation on saccade patterns. If one were to efficiently sam-
ple information, adjusting the sampling strategy according to
the current internal status would seem ideal, but the exist-
ing literature also suggests limited effects (48, 49). Saccade
timings are largely determined by stochastic processes, either
indirectly influenced by cognitive demands on a timescale
longer than a trial or modulated only by strong or low-level
visual cues (50–56). For example, in a visual search task,
the difficulty of discriminating between target and distractor
items does not increase the viewing duration for each item
but instead increases the frequency of return saccades to pre-
vious items (48). In studies using onset delay paradigms, re-
searchers found that fixation duration increased when image
onset was delayed by a mask after a saccade (52), but the
mask is a strong visual cue that immediately signals the lack
of information. This is in contrast to our tasks, which re-

quired fine stimulus discrimination to determine reliability.
In perceptual decision-making tasks, the duration required
to judge stimulus uncertainty is often on a timescale simi-
lar to the duration required to judge the stimulus category
itself (57, 58), presumably making it impractical to dynam-
ically control saccade patterns by ongoing decision-making
processes.

It is possible that saccade patterns and decision-making
processes become independent only for participants fully fa-
miliarized with the task and stimuli (7, 59). When learning a
new task, individuals need to explore images and look for in-
formative features (7), and this process would require the ad-
justment of saccade plans according to the information they
gain during decision making (29, 30). Through this process,
participants probably converged on eye movement patterns
tailored to the task, and thereafter, their behavior remained
stable. Such a learning process is beyond the scope of the
present model and should be investigated in the future.

Although our primary goal was not to investigate the spa-
tial distribution of saccades during object recognition, we
nevertheless observed rich eye movement patterns in our
tasks (Fig. 2). Participants tended to look at informative re-
gions or nearby areas in all tasks (Fig. 2B) and made fre-
quent saccades across features (Fig. 2C). A seminal study by
Peterson and Eckstein (2012) showed that people look just
below the eyes during face recognition, which is consistent
with the prediction of an ideal-observer model. Our observa-
tions of the initial fixation positions replicated these findings
(Fig. 2A), whereas fixations diverged to other locations dur-
ing prolonged viewing, which is also consistent with their re-
sults (60). A tantalizing question is whether this behavior is
optimal in terms of information sampling (61–63), but defin-
ing optimality in our tasks is not trivial. An ideal-observer
model may recommend maintaining fixation on the most in-
formative part of an image, but there could be many reasons
for making saccades, such as avoiding sensory adaptation or
exploring whether unfixated features provide more evidence.
Future studies should assess the optimality of eye movements
during prolonged viewing of object images.

It would also be worthwhile to discuss how our findings
extend to natural object recognition in general. We designed
our stimuli to have two distant informative features to ma-
nipulate informativeness and detect the participants’ saccades
across the features. Although we designed our stimuli to be
naturalistic—eyes and mouth are indeed informative features
for face recognition (26, 64)— other object images would
have more than two diagnostic features that could also over-
lap with each other. In such cases, people may not directly
look at each feature but rather look at a place between the fea-
tures to sample evidence. Indeed, in the expression task, the
participants tended to fixate between the eyes and mouth (Fig.
2B) and had a broader spatial window (Fig. 3G) sampling
evidence from both fixated and unfixated features (Supple-
mentary Fig. 8). This might indicate that the participants ad-
justed their spatial sampling windows depending on the task
context. Stimulus size would also influence sampling strate-
gies (1, 65). In our experiments, we used a naturalistic range
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of object sizes (37), but if the viewing distance increases, the
image would become too small to make saccades inside, in
which case features could be spatially integrated without sac-
cades (26). Although we were unable to test these diverse
conditions, our model —evidence accumulation that depends
only on the eccentricity of features— can readily offer quan-
titative predictions of object-recognition behaviors in any of
these settings.

We hope that the simplicity of the proposed framework
encourages further investigation of object recognition under
naturalistic viewing. Our findings suggest that, despite the
apparent complexity of oculomotor events, there could be sta-
ble representations of momentary and accumulated sensory
evidence across saccades in the neural circuitry for object
processing (66) and decision making (67). Such a biologi-
cal solution for active object vision may also inspire artificial
neural networks that have been largely confined to the passive
processing of static images (68).
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Methods

Participants and experimental setup
We recruited 22 participants (age 20-40, 4 males and 18 fe-
males, students or employees of the Chinese Academy of
Sciences). Our participant sampling did consider sex, as it
was deemed unlikely to influence the outcomes of this study.
All participants had normal or corrected-to-normal vision and
were naive to the purpose of the experiment. Written in-
formed consent was obtained from all participants. Six of
them were dropped before the main data collection, either be-
cause of scheduling issues or poor eye-tracking quality. All
experimental procedures were approved by the Institutional
Review Board of the Center for Excellence in Brain Science
and Intelligence Technology (Institute of Neuroscience), Chi-
nese Academy of Sciences.

Nine participants performed the free-saccade task (Fig. 1),
while nine performed the guided-saccade task (Fig. 5). Two
of them performed both tasks. In each task, we assigned
participants to perform categorization of face identity stim-
uli, face expression stimuli, or car stimuli (Fig. 1A; three
participants each), but this study focused on the results con-
sistently observed across these stimulus conditions. Sam-
ple sizes were chosen following the convention of studies
using psychophysical reverse correlations and modeling of
decision-making behavior (26). We had to set our sample
sizes small because we sought to collect a large number of
trials from each participant (∼3,500 trials per participant;
63,984 total trials in this study) after extensive practice ses-
sions (∼2,000 training trials per participant prior to data col-
lection) in order to obtain as much reliable behavioral data
as possible from individual participants (69). We performed
a sensitivity analysis and estimated that our sample size (9)
could detect an effect with 80% power provided the standard
deviation across participants was less than 90% of the effect
size (70). When the statistical tests did not show significance,
we supplemented our analysis with the Bayes factor and in-
terpreted the results cautiously.

During the experiments, the participants sat in a height-
adjustable chair in a semi-dark room. Their chins and fore-
heads were supported by a chin-rest mounted on a table,
which was fixed at a specific position to ensure a stable view-
ing distance of 57 cm from a cathode-ray-tube monitor (17-
inch IBM P77; 75 Hz refresh rate; 1024 × 768 pixel screen
resolution). The Psychophysics Toolbox (71) and MATLAB
(MathWorks, Natick, MA, USA) were used to control the
stimulus presentation. The eye movements were monitored
using a high-speed infrared camera (Eyelink 1000 Plus; SR
Research, Ottawa, Canada). The gaze position was recorded
at 1 kHz.

Task designs
Face and object categorization task with free eye movement.
To examine the contribution of saccades to object recogni-
tion, we designed three versions of the object categorization
task: face identity, face expression, and car categorization
(Fig. 1A). In each version of the task, participants classified
an image into one of two categories while they were allowed

to freely make saccades inside the image. The stimuli were
chosen from a morph continuum created by interpolating two
prototype images, and the participants were required to re-
port which prototype the given stimulus looked similar to.
The two prototypes were male and female faces in the iden-
tity task, happy and sad faces of the same individual in the
expression task, and two types of cars in the car task (Fig.
1A). We used face stimuli because they allow easy defini-
tion of informative features (i.e., eyes and mouth) and previ-
ous studies have successfully explained face categorization
during fixation conditions using an evidence accumulation
model (26, 33). We further designed a car categorization task
to ensure that the results were not specific to face recognition.

Participants began each trial by fixating on a fixation point
(0.3° diameter), which appeared randomly at one of six pe-
ripheral locations (11.5° away from the screen center for the
face tasks, 8° for the car task) (Fig. 1B). After a short delay
(400-700 ms, truncated exponential distribution), a stimulus
appeared at the center of the screen. The randomized fixation
point locations were intended to minimize bias in the location
that participants initially looked at in the image (8, 72). Par-
ticipants then had to make a saccade in the stimulus within
500 ms of its appearance. The stimulus was kept ambiguous
(halfway between the two prototypes on the morph contin-
uum) and thus uninformative until the participants made a
saccade. After fixation, the stimulus was replaced with a face
image of the morph level chosen for the trial. The partici-
pants were then allowed to look at any place in the image, but
if their fixation left the image, the trial was aborted. Partic-
ipants reported the category of the stimulus by pressing one
of two keyboard buttons whenever they were ready (reaction-
time task). The stimulus was extinguished immediately when
the button was pressed. If the participants did not make a de-
cision within 5 s, the trial was aborted. In total, 1.75% of
trials were aborted either due to fixation breaks during stimu-
lus presentation or time out. Auditory feedback was provided
for correct and incorrect decisions. If the stimulus was am-
biguous (halfway between the two prototypes on the morph
continuum), the correct feedback was provided in a random
half of the trials. Following feedback, the next trial began
after a 1 s inter-trial interval.

We created each stimulus set by continuously morphing
two prototype images using a custom-made program (26).
Prototypes for the expression task were obtained from the
Nim Face set (23), prototypes for the identity task were ob-
tained from the Tsinghua Facial Expression Database (24).
The face images shown in the figures were from these
databases and presented with permission. The prototypes
for the car task were generated by authors using Midjourney
(https://www.midjourney.com) using prompts such as “Clean
and minimalist product photography of a white SUV with
soft edges, highlighting its sleek and modern design”. We
then used Photoshop (Adobe, San Jose, CA) to edit the im-
age parts that were difficult to morph, such as the steering
wheels, to create a naturalistic morph continuum. Our pro-
gram generated the morphed intermediates of the two proto-
types by linearly interpolating the positions of manually de-
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fined anchor points on the prototypes and textures within the
tessellated triangles defined by the anchor points. The linear
weights for the two prototypes determined the morph level
of an image (ranging from -100 to 100%, where the two ex-
tremes corresponded to the two prototypes). In each trial, we
chose an average morph level from -96, -48, -24, -12, -6, 0, 6,
12, 24, 48, 96%. For participants with higher performance,
we also added -3 and 3% morph levels.

Our algorithm could morph local stimulus features inde-
pendently. For face images, we manually circumscribed the
regions containing the eyes and mouth and morphed only the
inside of the regions (Fig. 1A). Similarly, for the car images,
we manually defined the front and rear regions (Fig. 1A).
The regions outside these features were maintained halfway
between the two prototypes and thus remained uninforma-
tive. For face images, because the regions outside the eyes
and mouth show a limited contribution to judgments (26, 64),
this segmentation of informative and uninformative regions
was unlikely to influence participants’ behavior. For the car
images, the front and rear parts were split at the midline (Fig.
1A), but the two prototypes were mostly different around the
hood (bonnet) and the rear window. While the choice of pro-
totype images would affect which parts become informative,
we do not consider that this choice affected the main conclu-
sions of this study. We could also independently adjust the
full dynamic range of the morph line for each feature. This
adjustment was made when we realized that the participant
relied heavily on (kept looking at) one feature during train-
ing. We gradually decreased the range of the over-sampled
features up to 50% while confirming that the participant’s
overall performance was maintained. Once the main data col-
lection began, we did not make any adjustments.

To examine how each object feature contributed to the par-
ticipants’ decisions, we added random temporal fluctuations
of the morph level to the individual features in each trial. The
mean morph level was fixed within a trial and matched be-
tween the two features, but the morph level of a feature was
randomly updated every 106.7 ms (eight monitor frames of
the 75Hz display) drawn from a Gaussian distribution with
an SD of 20%. The 106.7 ms fluctuation duration provided
us with sufficiently precise measurements of the participants’
temporal weighting in their ∼1 s decision time, while the du-
ration was sufficiently long to ensure a subliminal transition
of the morph levels from one image to another. Between two
morphed face images, we interleaved a noise mask (phase
randomization of the 0% morph face) with a smooth, half-
cosine transition function during the eight monitor frames
(26). This mask minimized the chance that participants no-
ticed fluctuations in morph levels during stimulus presenta-
tion.

In each trial, the stimulus fluctuations started only after the
participants made a saccade into the stimulus. Prior to the
saccade, participants fixated on a fixation point placed pe-
ripherally (8-11.5° away from the image). During this period,
the stimulus remained uninformative (0% morph). Thus, the
participants could start judging the stimulus category only af-
ter fixating on it. Exactly at the moment of saccade to a stim-

ulus, the stimulus underwent a sudden change in the morph
level, but no participants noticed this change. Since the stim-
ulus fluctuations started only after fixation on the image, psy-
chophysical kernels (Figs. 3E, 4) were aligned to the timing
of the participant’s fixation on the stimulus rather than the
timing of the actual stimulus onset.

We determined the stimulus sizes in our tasks to character-
ize human object recognition behavior under natural condi-
tions. We thus set the distance between the two informative
features (eyes and mouth for face stimuli, and front and rear
parts of car stimuli) to be five visual degrees apart. This is ap-
proximately the size that we experience when seeing objects
and faces at natural distances (37). Under this constraint, the
full stimulus size was ∼ 9.3° × 11° (W × H) for the identity
task, ∼ 9.4° × 13.6° for the expression task, and ∼ 7° × 2.8°
for the car task. We expect that participants’ saccade patterns
would be greatly affected by stimulus size (1, 65). For ex-
ample, participants would cease making saccades when the
stimulus becomes too small. However, our primary goal was
to study the effect of saccades under naturalistic conditions,
where saccades would spontaneously occur, and we believe
that our conclusions hold as long as they are tested under such
naturalistic ranges (see Discussion).

We recruited nine participants for the free saccade tasks,
of whom three each were randomly assigned to perform each
of the three categorization tasks (31,128 trials in total; 3,459
± 106 trials per participant). Prior to the main data collec-
tion, the participants underwent extensive training (on aver-
age 2,000 trials) to ensure stable behavioral accuracy. During
training, we informed the participants that the images con-
tained multiple informative features for categorization and
encouraged them to use multiple features to solve the task.
However, we did not directly ask them to make eye move-
ments or to look at particular parts of an image.

Guided saccade task. To examine whether oculomotor com-
mands are necessary for feature integration, we designed a
guided saccade task in which participants categorized objects
with or without a saccade (Fig. 5A). In the saccade condition
(Fig. 5B), we instructed participants to make a saccade dur-
ing the stimulus presentation by moving the fixation point
from one region to another. In the no-saccade condition (Fig.
5E), participants maintained fixation while the stimulus posi-
tion suddenly moved, mimicking the change in retinal input
resulting from a saccade. Similar to the free saccade task, we
used face identity, expression, and car categorization condi-
tions with the same stimuli and categorization rules.

In the saccade condition, participants initially viewed a fix-
ation point that appeared at one of two locations near the cen-
ter of the screen. The two locations corresponded to the lo-
cation of the two informative features of a stimulus shown
shortly afterward (eyes or mouth in the face tasks, front or
rear in the car task). There was a variable delay between
the participant’s fixation onset and stimulus onset (400-700
ms, truncated exponential distribution). Immediately after
the stimulus onset, the fixation point shifted to the location
of the other informative feature, and participants had to make
a saccade to this location in between 100-400 ms. After suffi-
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cient training, participants could consistently make a saccade
with ∼200 ms latency (timeout: 5.1% of trials). After the
saccade, the stimulus continued for another 213.4 ms; there-
after, it disappeared together with the fixation point, and the
participants had to report their decision by pressing a key-
board button within 1 s (timeout: 1.5% of trials). These brief
stimulus presentations replicated previous studies that inves-
tigated trans-saccadic integration (14) and were ideal for test-
ing the temporal integration of evidence because behavioral
performance is likely to saturate with longer stimulus dura-
tion (73).

In separate blocks, we performed the no-saccade condi-
tion, which mimicked the change in retinal input during the
saccade condition without asking participants to make an ac-
tual saccade (Fig. 5E). In this condition, the fixation point
remained in the same place, but a stimulus briefly appeared
with one feature centered at the fixation point, and after a
brief blank period, it reappeared with the other feature cen-
tered at the fixation point. Thus, the condition approximated
what the participants would have seen during the saccade
condition. The duration of the first stimulus presentation and
the blank were randomly sampled from the distribution of the
saccade latency (170.0 ms ± 5.3 ms) and saccade duration
(53.5 ms ± 1.3ms) obtained in the main condition for each
participant. To obtain these numbers, we first collected half
of the data for the saccade condition. Subsequently, we col-
lected the remaining half together with the no-saccade con-
dition in the same sessions to ensure that each participant’s
training level was similar between the two conditions.

In the saccade and no-saccade blocks, we also included
trials in which a stimulus was shown only before or after a
saccade/stimulus jump (Fig. 5B, E). In these trials, we re-
moved/displayed a stimulus contingent on the timing of the
participant’s saccade (either “Pre only” or “Post only” trials
in Fig. 5B, E right). These trials were randomly interleaved
with the main condition in which a stimulus was shown in
both periods (“Both” trials; Fig. 5B, E left). This allowed
us to test whether participants’ performance improved when
a stimulus was present both before and after a saccade, indi-
cating the integration of evidence across saccades.

The stimulus morph levels fluctuated in this task, similar
to those in the free saccade task. Because the morph levels
were updated every 106.7 ms (eight monitor frames, during
which a stimulus image made a smooth transition to a noise
mask; see above), approximately two cycles of fluctuations
occurred before a saccade, as the saccade latency was, on av-
erage, ∼170 ms. After the saccade, we reset the fluctuation
cycle such that one cycle started immediately after the sac-
cade landing, ensuring consistency in the pattern of stimulus-
mask cycles before and after the saccade. The post-saccade
stimulus fluctuations continued for two cycles (213.4 ms) be-
fore the stimulus was terminated. As in the free saccade task,
fluctuations occurred independently for the two informative
features, whereas the average morph level was the same for
the two features and was constant during the trial. The aver-
age morph levels were chosen from -96, -48, -24, -12, -6, 0,
6, 12, 24, 48, 96%. For participants with higher performance,

we added -3 and 3% morph levels.
Nine participants performed this guided saccade task, of

whom three each was randomly assigned to the facial iden-
tity, expression, or car categorization conditions (32,856 tri-
als in total; 3,651 ± 68 trials per participant). Prior to the
main data collection, the participants underwent extensive
training (on average 2,000 trials) to ensure stable saccade la-
tency and behavioral accuracy.

Data analysis

Detection of cross-feature saccades and quantification of
saccade patterns. Saccades were detected from the 1 kHz
eye tracking data using the Eyelink 1000 Plus’ default sac-
cade detection parameters with additional criteria (74) to en-
sure accuracy. We first applied a small smoothing (a Gaussian
filter with 3 ms standard deviation) to the tracking data to re-
move high-frequency noise and then detected the timings of
eye traces with a velocity exceeding 30 °/s for 4ms and ac-
celeration exceeding 8000 °/s2 for 2ms. These timings were
considered potential saccade onsets. We then estimated the
end time of these potential saccades by looking for the time
when the velocity fell below 20 °/s for 2 ms. Finally, we
classified them as saccades if their duration was longer than
6 ms and they were observed at least 20 ms after the last sac-
cade (74). Through manual inspection, we confirmed that
these parameters accurately detected saccades. In rare cases,
noise in the eye traces led to the false detection of saccades,
which were removed during manual inspection.

Our key objective was to examine how large saccades
spanning multiple features in an image contribute to the in-
tegration of evidence across features. We thus focused on
these cross-feature saccades in our main analyses. We con-
sidered a saccade a cross-feature if it satisfied the following
criteria. (1) The saccade start point was inside or near the
region of one feature (< 1.5° for the face tasks and < 0.5°
for the car task) and its end point was inside or near the re-
gion of the other feature. These numbers were chosen based
on manual inspection of eye movement patterns. The region
for each feature was manually circumscribed (Supplementary
Fig. 1B), and the average gaze positions were calculated 50
ms before and after the saccade to determine whether they
were near or inside the regions. The distance to a feature was
defined as the minimum Euclidean distance between the gaze
position and any point on the manually drawn contour line of
the feature. (2) The amplitude of the saccade was greater than
2°. This second criterion ensured that the saccade was not
small enough to occur right around the boundary of the two
features but was large enough to cause a considerable change
in the retinal input. The number was determined through the
manual inspection of saccade patterns and the distribution of
saccade amplitudes (Fig. 2E). (3) The saccade started at least
50ms after the participant fixated on the stimulus and at least
50ms before the participant’s response. This condition en-
sured that it occurred during decision formation.

To examine how stimulus fluctuations influenced the par-
ticipants’ decisions depending on their gaze positions, we de-
fined the fixated and unfixated features in each cycle of stim-
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ulus fluctuations in several analyses (Figs. 3, 4, Supplemen-
tary Fig. 8A, B). We first averaged eye positions within each
of the 106.7 ms fluctuation cycles and then checked whether
the averaged position was inside or near (< 1.5° for the face
tasks and < 0.5° for the car task) the region of a feature cir-
cumscribed manually. If so, the feature was defined as fix-
ated, whereas the other feature was defined as unfixated. This
definition follows the criteria used to define cross-feature sac-
cades above. If the average eye position was outside the range
of both features, the fixated feature was not defined, and the
corresponding cycle of stimulus fluctuations was excluded
from the analysis. A fluctuation cycle was also excluded if
there was a cross-feature saccade within this period.

During quantitative analyses and model fitting (Figs. 3G,
4, Supplementary Figs. 6, 7, 8C), we also calculated the dis-
tance between the participant’s gaze position and each object
feature each time in a trial. This distance followed the def-
inition described above as the minimum Euclidean distance
between the gaze position and any point on the contour line
circumscribing the region of the informative feature (Supple-
mentary Fig. 1B). If the gaze position was within the cir-
cumscribed region, the distance was set to zero. Thus, this
definition is agnostic of where the exact center of the infor-
mative features is.

Psychometric and chronometric functions. To quantify be-
havioral performance in the free saccade task, we fitted the
following logistic function to the choice data of each partici-
pant for each stimulus condition (Fig. 1C top):

logit [P (choice2)] = α0 +α1s (1)

where logit(p) = log(p/1 − p), s is the nominal stimulus
strength of a trial ranging from –1 (–100% morph level) to
+1 (+100% morph level), and αi are regression coefficients.
α0 quantifies the choice bias and α1 quantifies the slope of
the psychometric function.

The relationship between stimulus strength and the partic-
ipants’ mean reaction times (RTs) was assessed using a hy-
perbolic tangent function (Fig. 1C bottom):

T = β0
s

tanh(β1s)+β2 (2)

where T is the mean RTs in seconds and βi indicates the
model parameters. β0 and β1 determine the stimulus-
dependent changes in RTs, whereas β2 quantifies the portion
of RTs independent of the stimulus strength.

Behavioral performance in the guided saccade task (Fig.
5) was quantified using the following logistic function:

logit [P (correct)] = α1s+α2(s · I) (3)

where an indicator variable, I , was used to quantify the dif-
ference in the slope of the psychometric functions between
two conditions. For example, when we compared behavioral
performance between the “Both” and “Pre only/Post only”
conditions in the guided saccade task (Fig. 5B, E), I was set
to 1 in the former condition and 0 in the latter condition. We

fitted the above function to individual participants’ data and
examined the performance difference between conditions by
testing if α2 was significantly different from zero using t-test
across participants. The function did not have a bias term be-
cause it was fit to the probability of correct, which is 0.5 at
zero stimulus strength by definition.

Joint psychometric functions of features across saccades.
To directly test whether participants used fixated features be-
fore and after cross-feature saccades, we plotted their choice
performance as a function of the morph levels of these fea-
tures (Fig. 3A-C). For example, if a participant first fixated
on the eye region and then made a saccade to the mouth re-
gion before committing to a choice, we computed the aver-
age morph fluctuations in the eye region before the saccade
as well as the average in the mouth region after the saccade
(Fig. 3A). We then projected each trial in a 2D space de-
fined by the morph levels before and after a saccade. In this
space, we computed the probability of choice of the trials in
a Gaussian window with a standard deviation of 5% and vi-
sualized the probability of choice by drawing iso-probability
contours at 10% intervals (Fig. 3B). Similarly, if a partici-
pant made two cross-feature saccades, we plotted their per-
formance as a function of the first, second, and third fixation
features (Fig. 3C). Since the participants made fewer than
three cross-feature saccades in most trials (Fig. 2F), we did
not consider trials with more saccades.

To test the significance of the influence of each fixated fea-
ture on participants’ choices, we performed the following lo-
gistic regression for trials with one cross-feature saccade:

logit [P (choice2)] = w1s1 +w2s2 +w1,2s1s2 (4)

where s1 and s2 correspond to the morph levels of the fea-
tures fixated the first and second times in a trial, respectively.
w1 and w2 are linear coefficients, whereas w1,2 is a coeffi-
cient of the multiplicative interaction term. For trials with
two cross-feature saccades, we used

logit [P (choice2)] = w1s1 +w2s2 +w3s3

+w1,2s1s2 +w1,3s1s3 +w2,3s2s3

+w1,2,3s1s2s3
(5)

where s1, s2, and s3 corresponded to the morph levels of
the features fixated first, second, and third times in a trial. We
performed regression using all trials within individual partic-
ipants and performed a two-tailed t-test across participants to
test the significance of the contribution of each feature.

Psychophysical reverse correlation. To test whether features
at different points in time across saccades affected the partic-
ipants’ choices, we performed psychophysical reverse corre-
lations (33, 36) (Figs. 2H, 3E, 4, Supplementary Figs. 5-9).
Psychophysical kernels (Kf (t)) were calculated as the differ-
ence in the average fluctuations of morph levels conditional
on the participant’s choices:

Kf (t) = E[sf (t)|choice1]−E[sf (t)|choice2] (6)
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where sf (t) represents the morph level of feature f at time
t. This analysis only used trials with low stimulus strength
(nominal morph level, 0-12%). For the non-zero strength tri-
als, the mean strength was subtracted from the fluctuations,
while the residuals were used for the reverse correlation. In
Figure 2H, we averaged the kernels for each feature over time
when the participants viewed the feature. For the guided sac-
cade tasks (Fig. 5D, G), we averaged the two cycles of stimu-
lus fluctuations both before and after the saccade to calculate
the kernels (but see Supplementary Fig. 9G, H for unaver-
aged kernels).

When plotting the time course of psychophysical kernels
(Figs. 3E, 4, Supplementary Figs. 5-7), we sorted indi-
vidual stimulus fluctuations depending on which feature the
participant fixated on during that cycle of fluctuations, and
then generated kernels for the fixated and unfixated features.
When a participant’s gaze position could not be classified
into a feature or a cross-feature saccade occurred during a
cycle of fluctuation, it was excluded from the analysis. Since
the stimulus fluctuation started when participants fixated on
an image (see above), the kernels aligned to stimulus onset
started from the moment of fixation and were calculated up
to the first cross-feature saccade or up to 1 s in the trials
without saccades. The kernels aligned to the participants’
responses were calculated using stimulus fluctuations after
the last cross-feature saccade or using the fluctuations for 1 s
from the response when there was no saccade in a trial. For
the kernels aligned to saccades, we used five stimulus cycles
before and after the saccade onset. Figure 4D shows an ex-
ample trial with only one saccade, but if there were more than
one cross-feature saccade, all were used when computing the
kernels. For the kernels shown in Figures 3E and 4, we av-
eraged the kernels across all participants. The kernels of the
individual participants can be found in Supplementary Figure
6. Three-point boxcar smoothing was applied to the temporal
kernels for denoising. However, we did not perform smooth-
ing when evaluating the fitting quality (R2).

To further quantify how gaze position modulated the con-
tribution of local features to decisions, we realigned the same
stimulus fluctuations according to the distance between the
participants’ gaze position and each feature location (Fig.
3F, G). As explained in the “Detection of cross-feature sac-
cades and quantification of saccade patterns” section above,
we averaged the gaze positions during each cycle of stimulus
fluctuation and computed its distance from any point on the
counter line circumscribing the region of each feature (Sup-
plementary Fig. 1B). If the gaze position was within the cir-
cumscribed region, the distance was set to zero. If a saccade
occurred during one cycle of stimulus fluctuation, the fluc-
tuation was excluded from the analysis. We then sorted the
fluctuations according to the calculated distance and gener-
ated psychophysical kernels at each distance d as

Kf (d) = E[sf (d)|choice1]−E[sf (d)|choice2] (7)

where sf (d) is the morph fluctuation of feature f at distance
d. This was calculated using stimulus cycles concatenated
across the trials with low stimulus strength (nominal morph

level, 0-12%) within individual participants.

Calculation of saccade frequency and probability. We calcu-
lated the frequency of participants’ saccades for each stim-
ulus strength to test any potential dependence on stimulus
difficulty (Fig. 6B). Frequencies could not be simply esti-
mated by dividing saccade counts by trial duration (i.e., RTs)
because saccades tended to be periodic. Suppose that sac-
cades occur every 400 ms regardless of stimulus strength. If
the average RT was 500 ms for one stimulus and 700 ms for
another, saccade counts are expected to be one per trial, and
thus, saccade counts per time tend to be underestimated for
stimuli with longer RTs. Therefore, we had to match the RT
distributions across stimulus strengths for a proper compari-
son. We generated RT histograms with 100 ms intervals and
performed histogram matching by randomly subsampling tri-
als from each stimulus strength. We then counted the total
number of saccades in these subsampled trials and divided
this number by the total stimulus duration across the trials.
The frequencies were calculated in this manner for individ-
ual participants and then averaged (Fig. 6B). Similarly, the
average amplitudes of saccades were calculated using the RT-
matched trials (Fig. 6E).

We further took an alternative approach to estimate sac-
cade frequency without matching RT distributions (Fig. 6C).
In this method, we calculated the number of saccades that oc-
curred at each time point (100 ms bins) and divided it by the
number of trials whose RT was longer than that time point.
This saccade probability is not affected by the interaction of
RTs and saccade timing outlined above because this metric
does not depend on the duration of trials after each time point
to compute the probability. However, the results can be noisy,
particularly for later time points, because fewer trials con-
tribute to the calculation. We therefore classified trials into
two groups (easy: > 20% morph level, difficult: < 20%) to
perform this analysis.

Model fit and evaluation

To quantitatively examine whether the participants’ choice
behavior during the free-saccade task could be explained by
the integration of sensory evidence over saccades, we con-
structed a simple extension of evidence accumulation models
widely used to explain behavioral data in a variety of percep-
tual decision-making tasks (26, 32). We also developed mul-
tiple alternative models to confirm that no alternative mech-
anisms account for the behavioral data. In what follows,
we first describe the expression and fitting procedure for the
main model and then extend them to the alternative models.

Main model. Our main model is an extension of the drift-
diffusion model, which considers multiple informative image
features and their distances from the participants’ gaze posi-
tions (Fig. 4A). The model was extended from that of a previ-
ous study that was demonstrated to accurately explain human
face categorization behavior measured under stable fixation
conditions (26). This previous model first linearly integrates
the fluctuations of the local features (si(t) for feature i at time
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t):

µ(t) =
N∑

i=1
ki ·si(t) (8)

where µ is momentary evidence for the model, N is the num-
ber of features, and ki is the sensitivity parameter for each
feature i. Momentary evidence is then accumulated over time
to form the decision variable (v) at each time t as

v(t) =
∫ t

0
µ(τ)+η(τ)dτ (9)

where η(τ) represents internal (neural) noise in the sen-
sory, inference, or integration processes, assumed to follow
a Gaussian distribution with mean 0 and SD σ(t). When
the decision variable (v(t)) reaches an upper or lower bound
(+B or -B), the model commits to a decision associated with
the bound. Reaction time was defined as the time required
to reach a bound plus a non-decision time including sensory
and motor delays. The non-decision time was drawn from a
Gaussian distribution with a mean of T0 and an SD of σT0 .

Our present model extends the above formalism by incor-
porating participants’ gaze positions as a factor that influ-
ences the informativeness of local features (40, 75, 76). We
added one free parameter (λ) that quantified the degree to
which the informativeness of each feature decays as a func-
tion of the distance from the gaze position (i.e., visual eccen-
tricity). The decay was expressed as an exponential func-
tion based on the previous studies that successfully mod-
eled visual acuity as a function of visual eccentricity (8, 41).
We also tested a linear decay function and confirmed that it
yielded similar results (Supplementary Fig. 7B). In the expo-
nential model, Eq. 8 was modified as:

µ(t) =
N∑

i=1
ki ·e−λdi(t) ·si(t) (10)

where di(t) is the Euclidean distance (in units of visual an-
gle) between the gaze position and object feature i at time t.
As mentioned above, the distance was defined as the min-
imum length between the gaze position and any point on
the counter line manually drawn to circumscribe each feature
(Supplementary Fig. 1B). If the gaze position was inside the
circumscribed region, the distance was set to zero. During
the saccades, both momentary evidence and diffusion noise
were set to zero to simulate the absence of visual input.

Once the momentary and accumulated evidence is defined
as above, we can numerically derive the probability that the
decision variable has value v at time t by solving the Fokker-
Planck equation:

δp(v,t)
δt

=
[
− δ

δv
µ(t)+0.5 δ2

δv2 σ2(t)
]

p(v,t) (11)

where p(v,t) denotes the probability density. The accumula-
tion process started from zero evidence and continued until
the decision variable reached one of the two bounds (±B),
indicating two choices. Thus, the partial differential equation

above has the following initial and boundary conditions:

p(v,0) = δ(v)
p(±B,t) = 0

(12)

where δ(v) denotes the Dirac delta function. The diffusion
noise (σ(t)) was set to 1, and the bound and drift rate were
defined in a unit of diffusion noise. The RT distribution for
each choice was obtained by convolving the distribution of
bound crossing times with the distribution of non-decision
time (a Gaussian distribution with a mean of T0 and an SD
of σT0 ). The SD, σT0 , was always set to one-third of T0 to
reduce the number of the free parameters.

Overall, our main model had five degrees of freedom: de-
cision bound height (B), sensitivity parameters for two fea-
tures (k1,k2), mean non-decision time T0, and the decay
rate of visual sensitivity λ. We fit the model parameters
by maximizing the likelihood of the joint distribution of the
observed choices and RT distributions of individual partici-
pants in each stimulus condition (33). Given a set of param-
eters, the stimulus fluctuations and participant’s gaze points
in each trial were used to calculate the RT distributions of
the two choices according to the model formulation above.
These distributions were used to calculate the log-likelihood
of the observed choice and RT for individual trials. These
log-likelihoods were summed across the trials to calculate the
likelihood function for the dataset. We used a simplex search
method (fminsearch in Matlab) to determine the parameter
set that maximized the summed likelihood. To avoid local
maxima, we repeated the fitting process from multiple ini-
tial parameter sets and selected the set that converged to the
largest likelihood as the final result. Because maximum like-
lihood estimation is sensitive to outliers, we excluded trials
with reaction times greater than three SDs from the mean for
each stimulus strength during model fitting. Fitting was per-
formed for each participant and included the trials with all
stimulus strengths. The fitting performance was quantified
using the coefficient of determination (R2) for the joint dis-
tributions of choices and RTs. For each morph level, we gen-
erated the RT distribution for each choice (bin size, 100 ms)
and computed the R2 between the data and model outputs
after concatenating the bins for all morph levels and choices.
The fitting curves shown in Fig. 4B-D are the averages across
participants.

Alternative models. To examine whether different mecha-
nisms accounted for the behavioral data, we developed multi-
ple alternative models. They included the “gaze independent”
model, which had constant sensitivity to each local feature
regardless of the participant’s gaze position, the “evidence
reset” model, which resets the accumulated evidence every
time the participant makes a cross-feature saccade, and the
“independent accumulator” model, which does not integrate
evidence across saccades but accumulates the evidence from
two features independently. These models were fitted to the
behavioral data using the abovementioned procedure.

The gaze-independent model was designed to test whether
the information of participants’ gaze positions was necessary
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to account for their behavior. In our main model, the sen-
sitivity to each feature was modulated according to the dis-
tance between the gaze position and the feature (Eq. 10),
whereas the gaze-independent model removed this term and
computed momentary evidence assuming that the sensitivity
to each feature is constant regardless of gaze position (thus
using Eq. 8) to determine the drift rate. The other compo-
nents of the model were the same as those used in our main
model. This model has one fewer parameter (4) than our main
model.

The evidence-reset model was created to test the possibil-
ity that, when sensory evidence from one feature was insuffi-
cient to form a decision, people would make a saccade to the
other feature and restart their decision-making process. To
simulate this, the model resets the accumulated evidence to
zero after a cross-feature saccade. Thus, the choices and RTs
of the model were based solely on the feature fixated on af-
ter the last cross-feature saccade in a trial. To fit this model,
we extracted the timing of the last cross-feature saccade and
the feature fixated afterward from each trial and simulated
the bounded evidence accumulation using them to predict the
choice and RT of that trial. The model was equivalent to our
main model if a trial did not contain a cross-feature saccade.
The model becomes unrealistic when the last cross-feature
saccade was too close to the RT of a trial; we thus did not
count saccades that occurred within the mean non-decision
time plus one standard deviation of non-decision time (i.e.,
T0 +σT0 ) from the RT. Besides this resetting mechanism, all
components of our main model, including the sensitivity of
each feature and the dependency of sensitivity on the gaze
positions, were preserved in this model. The number of pa-
rameters in this model is the same as that in our main model.

The independent-accumulator model tested the possibility
that the evidence was not integrated across saccades. Instead,
it independently accumulated evidence for the features fix-
ated on before and after saccades and committed to a choice
based on evidence from one of them. To explain the RTs,
the model computed the timing of reaching a decision bound
using the accumulated evidence of the last fixated feature, as
in the evidence reset model. However, the choice was de-
termined by the total evidence accumulated for one of the
features during the entire stimulus presentation period when
that feature was fixated on. We considered two mechanisms
to determine the features used to make a choice. One mecha-
nism involved random selection; with a probability η (a free
parameter to be fit), the feature lastly fixated was used to de-
termine a choice, and with a probability 1 − η, the other fea-
ture was used. The second involves the selection of features
with greater evidence. After reaching a bound, the model
compared the total evidence accumulated for each feature and
used the one with the greater absolute value to determine the
choice.

The independent-accumulator model was fitted using the
participants’ eye-movement patterns in each trial. We clas-
sified each period of fixation between cross-feature saccades
into one of the two features and then calculated the sum of
evidence across the periods for each feature. The model with

the random selection mechanism had six parameters. The
model that used the feature with higher evidence had five pa-
rameters.

To test fit performance, we computed the difference in
the Bayesian information criterion (∆BIC) between the main
model and each of the alternative models (Fig. 4, Supple-
mentary Fig. 7; positive values indicate poorer fits of the
alternative models). When comparing the main model and
the gaze-independent model, we summed the log-likelihood
of all trials and averaged the sum across participants to de-
rive the BIC. When comparing with the evidence-reset and
independent-accumulator models, we found that the same
procedure was not a fair comparison because these models
required the timing of the last cross-feature saccade and thus
had access to additional information for fitting choices and
RTs. Therefore, we shuffled the model-predicted choice and
RT distributions across trials within each morph level before
computing the log-likelihood. This shuffling, which was also
done for the main model, removed the additional informa-
tion of saccade timing. However, these models predicted a
log-likelihood of negative infinity for RTs before the last sac-
cade. To address this, we reshuffled until there were no trials
with infinite log-likelihood.

Generation of model psychophysical kernels and RT distri-
butions. The models above were fit to the choices and RTs,
but the model formulation does not prescribe its psychophys-
ical kernel. Therefore, we relied on simulations to estimate
the model kernels. We created 105 simulated trials with stim-
ulus strengths ranging from 0-12% using the same stimulus
distributions as in the main task (i.e., Gaussian distribution
with 20% SD). The model responses for these trials were
simulated using the same parameters fitted for each partici-
pant. We then used the simulated choices and RTs to calcu-
late model psychophysical kernels, following the same pro-
cedure used for the human data (Fig. 4D, F, H, J, Supple-
mentary Figs. 6, 7). Thus, the model kernels were not di-
rectly fitted to the participants’ kernels but were generated
from an independent set of stimulus fluctuations, making the
comparison of data and models informative. Similarly, the
RT distributions of the models (Fig. 4C) were generated us-
ing simulations with an independent set of morph fluctuations
to ensure an accurate comparison of the data and models.

To generate the model predictions, it was necessary to sim-
ulate eye movement data because the models needed to com-
pute the distance between gaze positions and feature loca-
tions to calculate the strength of momentary evidence (Eq.
10). To generate realistic eye data, we used the partici-
pants’ actual eye movement data from randomly selected tri-
als; however, when the duration was shorter than the duration
required for model simulations, we extended the eye data in
two different ways. For the main model, we stitched a chunk
of the eye trace obtained from another trial such that it could
be smoothly connected to the end of the eye data. To do
so, we looked for a chunk that started at a position less than
0.3° distance from the endpoint of the eye data. We repeated
this stitching procedure until the eye trace reached the desired
length. For the evidence reset and independent accumulator
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models, we simply extended the last eye position to become
the desired length of the eye trace because the model had to
assume that no saccade occurred during this extended period.

Ideal observer analysis for the guided saccade task
In the guided saccade task (Fig. 5), we examined whether
the participants’ performance could be accounted for by the
optimal integration of the evidence before and after a saccade
(Supplementary Fig. 9). The task had “Pre only” and “Post
only” conditions where a stimulus was only shown before or
after a saccade, and “Both” condition where a stimulus was
shown in both epochs (Fig. 5B). To build an ideal observer
model, we first estimated the precision of the participant’s
judgment of the stimulus in the “Pre only”, “Post only”, and
“Both” conditions (M̂pre,M̂post,M̂both) assuming Gaussian
judgment noise:

M̂pre = M +N(µpre,σ2
pre)

M̂post = M +N(µpost,σ
2
post)

M̂both = M +N(µboth,σ2
both)

(13)

where M is the actual stimulus value (morph level),
µpre,µpost, and µboth are biases in the judgment,
σ2

pre,σ2
post, and σ2

both are variances in the judgment, and N
represents the Gaussian distribution. These biases and vari-
ances could be estimated by fitting a cumulative Gaussian
distribution to the psychometric function of the “Pre only”,
“Post only”, and “Both” conditions, respectively.

An ideal observer model that optimally combines evidence
from “Pre” and “Post” epochs makes the following the max-
imum a posteriori estimate (14, 77, 78):

M̂ideal = N(µideal,σ
2
ideal)

µideal = wpre(M +µpre)+wpost(M +µpost)

σ2
ideal = ( 1

σ2
pre

+ 1
σ2

post

)−1
(14)

where

wpre = 1
σ2

pre

( 1
σ2

pre

+ 1
σ2

post

)−1

wpost = 1
σ2

post

( 1
σ2

pre

+ 1
σ2

post

)−1
(15)

The obtained σ2
ideal corresponds to the precision of the judg-

ment by the ideal observer. We compared this value against
σ2

both calculated above to test the optimality of the integra-
tion (Supplementary Fig. 9A-B). We further performed the
same analysis for the no-saccade condition (Supplementary
Fig. 9C-D).
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Fig. S1. Prototype images and definitions of feature regions. (A) The two prototype images used in each of the three stimulus conditions. The face
images were from the Nim Face set (23) and the Tsinghua Facial Expression Database (24) and presented with permission. The same face images
were used in the subsequent figures. (B) The manually defined regions of the two features used to determine which feature the participants fixated on
at each moment (red: feature 1, blue: feature 2). We calculated the minimum Euclidean distance between a gaze position and any point on the contour
line and considered that the participant looked at the feature if the distance was smaller than 1.5° for the face tasks or 0.5° for the car task. If the gaze
position was inside the circumscribed region, the distance was defined as zero. These numbers were chosen according to the manual inspection of
participants’ overall gaze positions.
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Fig. S2. Psychometric and chronometric functions for individual participants. Individual participants’ plots for Fig. 1C. Participants showed
stereotypical choice accuracy (A) and mean reaction times (B) as a function of the mean morph levels. Lines represent the logistic and hyperbolic
tangent fits for psychometric and chronometric functions, respectively.
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Fig. S3. Fixation and saccade patterns were largely consistent across participants. Individual participants’ plots for Fig. 2A-C. (A) Scatter plots
of the initial fixation positions after stimulus onset for each participant. Blue dots represent individual trials, while green dots represent the average. (B)
Density plots of the fixated positions during the entire stimulus viewing period. (C) Example saccades spanning the two informative features.
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Fig. S4. The amplitude and frequency of saccades were largely consistent across participants. Individual participants’ plots for Fig. 2D-F. (A) The
amplitude distributions of cross-features and other saccades for each participant. (B) The distributions of saccade counts per trial for each participant.
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Fig. S5. Psychophysical kernels plotted in different forms. (A) When psychophysical kernels were plotted around the time of the within-feature
saccades, they showed the continuous weighting of the same, fixated features across saccades. This supports the integration of evidence across small
saccades and complements the results for cross-feature saccades (Fig. 3E). Shaded regions indicate S.E.M. across participants. (B) Psychophysical
kernels (Fig. 3E) plotted with a higher temporal resolution. In the experiments, morph levels fluctuated every 106.7 ms (Fig. 1B), and the main figures
(Figs. 3E, 4) were generated by maintaining this resolution. However, saccades could occur at any time during the cycles of morph fluctuations. In
the main figures, the offsets between morph fluctuations and saccades were rounded to generate kernels; however, this panel plotted kernels after
recasting morph fluctuations at 1 ms resolution assuming that a morph level is constant during a 106.7 ms cycle. The kernels were smoothed with a 50
ms boxcar function. The results revealed a slight decrease in the amplitude of pre-saccade feature before saccades and an increase in the amplitude of
post-saccade features after saccades over 100-200 ms (see Wolf and Schütz (2015) for comparison). However, this should be interpreted with caution,
as the data are limited by the temporal resolution of the experimental paradigm.
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Fig. S6. The main model accounts for choice, reaction times, and psychophysical kernels of individual participants. The main model (shown
in Fig. 4A) was fitted to individual participants’ data. The conventions are the same as for Figs. 4B and D.
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Fig. S7. Comparison of psychometric and chronometric functions and psychophysical kernels across models. While alternative models
could also fit the participants’ psychometric (left) and chronometric (middle) functions, only the main model (A) and its variant (B) accounted for the
psychophysical kernels (right). ∆BIC indicates the difference in fit performance relative to the main model (positive values indicate poorer fits). (A)
The plots for the main model (Fig. 4A) are the same as those for Fig. 4B and D. (B) The main model used an exponential gain function to explain the
weighting of sensory features as a function of visual eccentricity (Fig. 4A inset), but changing it to a linear function yielded similar but slightly worse
fitting. (C) The gaze-independent model (Fig. 4E, F). (D) Evidence reset model (Fig. 4G, H). (E) The independent-accumulator model (Fig. 4I, J), where
the evidence from two features was randomly selected to make a decision. (F) Another variant of the independent-accumulator model, where the feature
with higher evidence was selected to make a decision.
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Fig. S8. The reliance on the unfixated feature depended on the stimulus conditions. (A) We performed psychophysical reverse correlation (Eq.
6) after sorting the two informative features into fixated and unfixated ones at each stimulus fluctuation cycle. The panels show the average of the
three participants in each of the three stimulus conditions shown in Fig. 1A. In the identity and car conditions, the kernel of the fixated feature was
large, while the kernel of the unfixated feature was near zero. In the expression condition, in contrast, the kernels of the fixated and unfixated features
showed similar amplitudes. This is consistent with the psychophysical kernels aligned to the distance from the gaze position (Fig. 3G), which revealed
a sharp dependency on the distance in the identity and car condition and a flat amplitude over a range of distances in the expression condition. (B)
These results were consistently observed in individual participants. Although these results remain preliminary due to the limited number of participants,
they nevertheless indicate that the extent of spatial integration is task-dependent. (C) Visualization of the gaze-dependent gain in our model (Fig. 4A,
inset) based on the fitted parameter (λ) also supports broader spatial sampling in the expression condition. The parameter λ was fitted for individual
participants, while the plots are based on λ averaged across them for each stimulus condition. The gain at zero-degree distance was always 1.
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Fig. S9. Near-optimal integration of features with and without saccades in the guided saccade task. (A) To examine the optimality of evidence
integration in the guided saccade task (Fig. 5), we quantified the behavioral accuracy for the “Both”, “Pre only”, and “Post only” conditions (Fig.
5B, E) using Eq. 13, which provides us the standard deviation (SD) in the participants’ estimate of a stimulus. If participants integrate evidence,
the SD in the “Both” condition should be smaller than the minimum SD between the “Pre only” and “Post only” conditions. In support of this, most
participants showed smaller SDs in the “Both” condition (t(8) = 1.93,p = 0.045, one-tailed t-test). Error bars indicate the S.E.M. (B) We further tested
the optimality of this integration by constructing an ideal observer model (14, 77, 78) that optimally integrates evidence of the “Pre only”, and “Post only”
conditions (see Methods; Eq. 14). The SDs of this ideal observer were similar to the participants’ SDs in the “Both” condition (t(8) = 1.45,p = 0.093),
although the participants’ performances looked slightly worse than those of the ideal observer. The result is consistent with near-optimal integration
of Gabor orientations across saccades identified in a previous study (14). (C, D) We observed similar patterns of near-optimal integration in the
no-saccade condition (Fig. 5E). Participants’ performance in the “Both” trials was better than the minimum of the “Pre only” and “Post only” trials
(t(8) = 3.37,p = 0.0049) but slightly worse than the ideal observer (t(8) = 2.50,p = 0.018). (E, F) Individual participants’ plots for Fig. 5D and G
indicate that participants used both features before and after a saccade/stimulus jump to make a decision. The participant IDs started from 10 for
disambiguation because different participants were involved in this task and the free saccade task. (G, H) Figure 5D showed psychophysical kernels for
pre- and post-saccade features calculated after averaging the morph fluctuations (2-3 cycles) in each epoch. Instead, the plots here show the kernels
without averaging these cycles. Consistent with Fig. 5D and G, both the pre and post features had positive kernels and their amplitudes were stable
over time, except for the third cycle of the pre period, where a saccade or stimulus jump often occurred early in this cycle.
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Fig. S10. Eye movement patterns did not strongly depend on stimulus strength in the majority of participants. Individual participants’ plots for
Fig. 6B, C. (A) The frequency of cross-feature saccades and all saccades was largely stable over a range of stimulus difficulties. As in Fig. 6B, the
RT distributions were matched across stimulus strengths for proper comparison. Error bars indicate the S.E.M. across trials. (B) The probabilities of
making cross-feature saccades at each moment were also largely similar between the easy (morph level: > 20%) and difficult (< 20%) trials, except for
participant 7, who tended to make more saccades in easy trials. Error bars indicate the S.E.M. across trials.
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