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Limitation of switching sensory information
flow in flexible perceptual decision making

Tianlin Luo1,2, Mengya Xu1, Zhihao Zheng1 & Gouki Okazawa 1,2

Humans can flexibly change rules to categorize sensory stimuli, but their
performance degrades immediately after a task switch. This switch cost is
believed to reflect a limitation in cognitive control, although the bottlenecks
remain controversial. Here, we show that humans exhibit a brief reduction in
the efficiency of using sensory inputs to form a decision after a rule change.
Participants classified face stimuli based on one of two rules, switching every
few trials. Psychophysical reverse correlation and computational modeling
reveal a reduction in sensory weighting, which recovers within a few hundred
milliseconds after stimulus presentation. This reduction depends on the sen-
sory features being switched, suggesting a constraint in routing the sensory
information flow.Wepropose that decision-making circuits cannot fully adjust
their sensory readout based on a context cue alone, but require the presence
of an actual stimulus to tune it, leading to a limitation in flexible perceptual
decision making.

Successful sensory-guided behavior relies on the ability to transform
relevant sensory signals into appropriate action plans that meet task
demands. Decades of work have investigated this behavior using per-
ceptual decision-making tasks with fixed stimulus-action mapping,
such as the direction discrimination of stochastic moving dots1. Under
these conditions, many aspects of behavior, such as choices, reaction
times (RTs), and confidence associated with choices, can be accurately
explained by a class of models that accumulate sensory evidence
toward a decision bound1–4. These models have been further sup-
ported by the findings of neural activity in multiple brain regions that
reflect similar computational processes4–6.

An important problem that has not been addressed in these fra-
meworks is how the brain flexibly selects relevant sensory information
depending on the behavioral context7. Our tasks in the real world are
diverse and variable, and our brains must constantly adjust the asso-
ciation of sensory inputs and actions. Recent neurophysiological stu-
dies havebegun to investigate this selectionprocess by employing task
designs that require participants to switch between two perceptual
tasks, such as color versus motion discrimination of colored random
dot motions8–12. These studies have found that neural population sig-
nals reflect flexible sensory gating8,13–15. Simultaneously, modeling

frameworks using recurrent neural networks (RNNs) have been
developed to account for neural activity8,16. RNNs often instantiate
selection mechanisms through internal dynamics that switch the flow
of sensory information according to external task context signals.

However, humans exhibit notable behavioral limitations in
switching tasks that are absent in these network models. Immediately
after a task switch, decisions often become less accurate and
slower17–20, even when the switch is predictable21 or explicitly cued22.
This switch cost is considered an important property of the brain’s
mechanismsof cognitive control23,24. A commonexplanation is that the
brain needs time to reconfigure its internal state for a switched
rule18,21,25,26 or to suppress the effect of the previous task rule arising
from inertia27 or priming28 from the previous internal state. If pre-
paration time is insufficient, this control process interferes with the
subsequent decision-making process and affects task performance18.
Interestingly, however, even when sufficient time is given after a task
switch is cued, humans still exhibit substantial switch costs (residual
switch cost;21,29–32), suggesting that the brain is unable to fully adjust its
internal state based on external cues alone. This has also been
explained as a limitation in cognitive control: either participants fail to
engage in a task until the task begins29, they cannot fully switch
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attention33–35, or the task stimuli themselves are required to recall the
stimulus-response mapping36–38. However, a satisfactory explanation
for why a contextual cue is insufficient for the brain to switch its state
internally is still lacking. This fundamental constraint on task switching
provides an important clue regarding how neural circuits implement
computational flexibility.

Here, we show that such switch costs in perceptual decision-
making reflect a reduction in the efficiency of using sensory inputs to
form a decision immediately after a task switch. This efficiency
reduction cannot be ameliorated by longer task preparations, but
quickly recovers to the baseline level within a few hundred milli-
seconds after stimulus presentation. Furthermore, the magnitude of
the switch cost substantially depends on the specific sensory features
to be switched, discordant with the idea that the cost is primarily
caused by the transition of abstract cognitive states. These findings
were obtained by employing advanced behavioral measurement and
modeling techniques to study perceptual decision-making39–42. In this
task, participants switched categorization rules for parametrically
morphed facial stimuli that had stochastic evidence fluctuations dur-
ing stimulus presentation. Psychophysical reverse correlation and
computational modeling revealed an initial reduction in sensory
weighting that resulted in a switch cost. We suggest that when
switching relevant sensory dimensions, decision-making circuits can-
not fully adjust their sensory readout based on an abstract context cue
alone, but require the presence of an actual stimulus to fine-tune the
readout for certain sensory features.

Results
Switch cost independent of stimulus strength and task
preparation time
We developed a context-dependent face categorization task, in which
participants classified a face stimulus based on one of two task rules.
We used face categorization because previous studies successfully
explained the behavior using a simple evidence accumulation
model39,40 and the high-dimensional nature of face stimuli allowed us
to easily introduce flexibility in the task, such as switching between
identity and expression categorization43–45.

In each trial, participants first fixated on a central fixation point
whose color indicated the task rule, then viewed a face stimulus

sampled from a two-dimensional (2D) morphed face space, and
reported the face category by making a saccade to one of the two
targets as soon as they were ready (Fig. 1a, b). The two rules corre-
spond to the two axes of 2D space (e.g., identity vs. expression; Fig. 1a).
The category boundarywas at the center of each axis (0%morph level)
and the stimulus became easier as the distance from the boundary
(absolute value of the morph level) increased. Importantly, on each
trial, the morph levels of the face stimulus fluctuated randomly every
106.7 ms around the sampled point in the 2D space (Fig. 1b inset),
allowing us to estimate how participants temporally weighted each
stimulus frame to make a decision (i.e., psychophysical reverse
correlation;46). Each face frame transition was interleaved with a mask
image so that the fluctuations remained subliminal. This task design
allowed us to quantitatively compare differences in decision-making
processes between the trials immediately following a rule switch (i.e.,
switch trials) and the remaining non-switch trials (Fig. 1c; task switched
every 2–6 trials following truncated exponential distribution).

After sufficient training, participants could switch task rules
immediately withminimal reduction in their choice accuracy, but their
RTs were substantially longer during the switch trials. The psycho-
metric function along the task-relevant axis appeared to be slightly
worse in switch trials, but the difference between switch and non-
switch trials did not reach statistical significance (Fig. 2a left; change in
logistic regression slope α1,switch = −1.1 ± 0.5 in Eq. (2), mean ± S.E.M.
across participants; t(7) = −2.3, p = 0.053, Cohen’s d = −0.8, 95%
CI = [−2.18, 0.02], relative support for null hypothesis BF01 = 0.547,
indicating anecdotal evidence for the alternative hypothesis, two-
tailed t-test; see Supplementary Fig. 1 for individual participants). The
participants also had negligible lapse rates for the easiest stimuli
(≤ 1.2% for all participants), suggesting that they did not show much
confusion of the task rule. Mean RTs were faster for easier stimuli as in
typical perceptual tasks (Fig. 2a right; the slope of hyperbolic tangent
function β2 = 5.2 ± 0.4, Eq. (3); t(7) = 14.3,p <0.001, Cohen’s d = 5.1, 95%
CI = [4.37, 6.10]), but they were systematically longer in switch trials
(Fig. 2a; the offset of chronometric function β0, switch = 0.17 ± 0.02, Eq.
(3); t(7) = 8.7, p < 0.001, Cohen’s d = 3.1, 95% CI = [0.12, 0.22]; ~ 170ms
longer on average across stimulus strengths).

Notably, the increase in average RTs was independent of the sti-
mulus difficulty. We computed the difference in average RTs between

Fig. 1 | Context-dependent face categorization task. a A two-dimensional face
stimulus space. Each axis corresponds to one of the two categorization rules (e.g.,
identity vs. expression; left column). In each rule, a category boundary divides the
stimulus space into two halves, which were associated with two saccade targets
(right column). Six out of the eight participants performed identity vs. expression
categorization, while the remaining two performed identity vs. age categorization
(Supplementary Fig. 1). The prototype faces were from the Tsinghua Facial
Expression Database72 and presented with permission. b Participants initiated each
trial by fixating on a central point whose color indicated the current task rule.
Shortly after, two target points appeared, followed by a sequence of face stimuli. In

the sequence, the morph levels of face stimuli were randomly updated every 106.7
ms—drawn from a Gaussian distribution with a mean chosen for each trial and a
standard deviation of 20% morph level along both task-relevant and orthogonal
axes—providing noisy sensory evidence (inset). Participants reported the stimulus
category bymaking a saccade to one of the two targets as soon as they were ready.
Reaction time was defined as the time between the stimulus onset and the saccade
onset. c Two task contexts were switched every 2–6 trials (truncated exponential
distribution). The trials immediately following a rule switch were defined as switch
trials (red), while the remaining trials were classified as non-switch trials (black).
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the switch and non-switch trials and confirmed that it was not correlated
with stimulus difficulty (Fig. 2c; F(5, 42) = 1.4, p = 0.247, η2 = 0.142,
BF01 = 5.26, one-wayANOVA). The increase in RTs occurred regardless of
the direction of task switching (e.g., identity to expression or expression
to identity; details are discussed in a later section) butwas only apparent
in one trial following a switch, and a statistically clear effect could not be
observed thereafter (Fig. 2e; p≥0.154 for all subsequent trials before the
next task switch, two-tailed t-test). Also, the number of non-switch trials

preceding a switch did not have a statistically clear effect on the RT
increase (Fig. 2f; F(3, 28) = 1.9, p = 0.156, η2 = 0.168, BF01 = 2.27 indicating
anecdotal evidence for the null hypothesis). Overall, participants cor-
rectly switched the task rule and largelymaintained choice accuracy, but
their average RTs increased uniformly across a range of stimulus diffi-
culties at the moment of the task switch.

However, this increase in average RTs cannot be explained by the
additional time required to prepare for switching rules. Importantly,

Fig. 2 | Task switching prolonged reaction times regardless of stimulus diffi-
culty and preparation time. a Reaction times (RTs) increased for all stimulus
strengths in the switch trials (right; β0, switch = 0.17 ± 0.02 in Eq. (3), mean ± S.E.M.
across participants; t(7) = 8.7, p < 0.001, Cohen’s d = 3.1, 95% CI = [0.1, 0.2], two-
tailed t-test), while choice accuracy was not significantly different between the
switch and non-switch trials (left; α1,switch = −1.1 ± 0.5 in Eq. (2); t(7) = −2.3, p = 0.053,
Cohen’sd=−0.8, 95%CI = [−2.18, 0.02], BF01 =0.547, two-tailed t-test). Smooth lines
are fit by a logistic function (left; Eq. (2)) and a hyperbolic tangent function (right;
Eq. (3)). Plots for individual participants are shown in Supplementary Fig. 1e. (b)
Choice accuracy and RTs did not depend on the stimulus strength along the task-
orthogonal axis. c, d The RT increase was independent of the stimulus strengths
both along the task axis (c) and orthogonal axis (d). e, f The increase in RTs was
presentmostly in thefirst trial after a task switch (e) anddidnot strongly dependon
the numberof non-switch trials before the switch (f). Theplots are the average of all

the stimulus strengths. g Participants could prepare for the switched rule after
fixating on a context cue until stimulus onset (top). This cue-stimulus interval (CSI)
approximately followed a truncated exponential distribution in the experiment
(bottom). h The increase in RTs after a task switch occurred both for the trials with
short (left) and long (right) CSIs. Trialswere split at themedianCSI (0.72 s). iOverall
increase in RTs (estimated by fitting a hyperbolic tangent curve to the chrono-
metric function; Eq. (3) inMethods) was stable across the range of CSIs. The line is a
linear regression averaged across participants. j Psychometric (top) and chrono-
metric (bottom) functions in the 2D space revealed no congruency effect in our
task. The stimuli in the second and fourth quadrants of the face space were
incongruent, as they were associated with the opposite targets between the two
tasks. Participants did not show much lower accuracy or longer RTs for these
stimuli. a–f, h–jData are presented asmean values ± S.E.M. across participants (a-f,
h, i); Data are presented as mean values across participants (j); n = 8 participants.
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the RT increase occurred even when we varied the preparation time
allotted to participants for a task switch. In our task, the fixation point
color indicated the task rule to the participants, and a stimulus was
presented after a variable duration following the participants’ fixation
onset (cue-stimulus interval, CSI: range, 0.45–1.50 s; median, 0.72 s;
truncated exponential distribution; Fig. 2g). If the CSI is not long
enough for participants to prepare for a task switch, shorter CSIs
should result in less task preparation and a delay in initiating the
decision-making process. However, the RT increase was large even for
trials with longer CSIs (Fig. 2h, i; long CSI (> 0.72 s) trials, β0,
switch = 0.15 ± 0.02, Eq. (3)). Thus, participants tended to spend an
additional 150–170 ms after stimulus onset to make a decision in the
switch trials, despite the much longer and variable preparation time
available before stimulus onset.

This persistent behavioral effect of task switching has been
termed the residual switch cost21,29–31. If CSIs are shorter than the range
we used (e.g., < 0.5 s;30), the switch cost can becomemore substantial,
which likely reflects the time participants needed to prepare for a new
task (task set reconfiguration;18) or suppress previous rules27,47. How-
ever, it remains controversial as to why the cost persists as a residual
switch cost with a longer preparation time29,43,48.

One hypothesis is that the stimulus itself triggers the reconfi-
guration of task rules36–38. However, the stimuli in our task contained
no clues to task rules, as they were sampled from the same 2D face
space in both contexts. If participants perceived stronger sensory
signals along the task-relevant axis as a task cue (e.g., clearly happy or
sad faces triggered the use of the expression rule), highermorph levels
would lead to smaller switch cost, but as shown above, the increase in
RTs was independent of stimulus strength (Fig. 2a, c). The increase in
RTs was also independent of the morph levels of the task-orthogonal
axis (Fig. 2b, d; F(5, 42) = 0.6, p =0.684, η2 = 0.069, BF01 = 18.5, one-way
ANOVA), ruling out the possibility that stronger task-orthogonal inputs
caused task confusion. Furthermore, there were only 0.01 ± 0.02 s RT
differences between stimuli associated with the same and opposite
targets (i.e. congruent and incongruent stimuli) in the two contexts
(Fig. 2j; congruent stimuli, RT = 1.07 ± 0.04 s; incongruent stimuli,
RT = 1.06 ± 0.04 s), suggesting that cognitive conflict at the response
level does not explain the observed switch cost.

Then, why does task switching prolong RTs regardless of stimulus
strengths without largely affecting choice accuracy? Previous studies
established a simple evidence accumulation model that accurately
accounted for choices and RTs during face categorization39,40. Such a
modeling approach is suitable for examining the mechanistic com-
ponents that explain the observed behavioral changes after task
switching. Furthermore, random stimulus fluctuations in our task
(Fig. 1b inset) enabled us to testwhether andhowparticipants changed
the weighting of sensory evidence for their decisions in the switch
trials. In the next section, we demonstrate that RTs increase owing to a
brief initial reduction in sensory weighting.

Brief initial reduction in sensory processing efficiency explains
switch cost
We performed a psychophysical reverse correlation39,46 to examine
how temporal stimulus fluctuations influenced participants’ behaviors
in the switch and non-switch trials. In brief, we calculated the differ-
ence in average morph fluctuations between trials in which partici-
pants chose one target over the other (Eq. (4)). The amplitudes of the
resulting psychophysical kernels reflect the degree to which sensory
fluctuations at eachmoment influenced the participants’ choices; thus,
they are informative for estimating how participants weigh sensory
evidence to make a decision39. The kernels were aligned to either the
stimulus onset or the timing of the participants’ saccadic responses
(Fig. 3a, b; see Supplementary Fig. 2 for individual participants).

In the non-switch trials, we found dynamic kernel patterns con-
sistent with linear evidence accumulation. The kernel aligned to

stimulus onset showed a gradual decrease in amplitude, whereas the
kernel aligned to the participants’ saccade revealed a characteristic
peak a few hundred milliseconds before the saccade (black lines in
Fig. 3a). Although these patterns seem to imply the dynamic weighting
of sensory evidence, previous studies have shown that they canbe fully
explained by a bounded evidence accumulation mechanism with a
constant sensory weight39,40. In this model (Fig. 3c), sensory fluctua-
tions are linearly accumulated toward the upper or lower bound.When
the accumulated evidence reaches a bound, this bounddetermines the
choice. RTs are modeled as the time required to accumulate evidence
plus the time irrelevant to decision-making (non-decision time),
including sensory and motor delays.

This evidence accumulation model accurately fit the psycho-
metric (Fig. 3d top) and chronometric functions (Fig. 3d bottom)of the
non-switch trials aswell as theRTdistributions (Fig. 3e;R2 = 0.85 ± 0.02
for choice and RT distributions in non-switch trials; see Methods for
the derivation of R2). The samemodel also quantitatively explained the
psychophysical kernels. Using the fitted model parameters, we simu-
lated the model responses to randomly generated stimulus fluctua-
tions and computed the psychophysical kernels of the model (thick
gray lines in Fig. 3f; R2 = 0.87). This model explains the gradual
reduction of the kernel aligned to the stimulus onset (Fig. 3f, left)
because there is a temporal gap between the bound crossing and the
report of a decision (i.e., the non-decision time). This non-decision
time renders a later portion of the stimulus fluctuations irrelevant to
the decision. Because the timing of the bound crossing varies across
trials, the model predicts a gradual reduction in the effect of stimulus
fluctuations over time39. The model also explained the peak of the
kernel aligned with the participants’ saccade (Fig. 3f, right). This peak
arises because, near the time of bound crossing, tiny stimulus fluc-
tuations can push the decision variable beyond the bound and dictate
the decision. Therefore, at that moment, the effect of stimulus fluc-
tuations becomes substantial and peaks. After this peak, the kernel
drops sharply to zero because of the non-decision time39,49.

Now, in the switch trials, we found that the kernel aligned to the
stimulus onset showed a characteristic reduction in amplitude during
thefirst 200–300ms after stimulus onset compared to that of the non-
switch trials (red lines in Fig. 3a; t(7) = 3.8, p = 0.007, Cohen’s d = 1.35,
95% CI = [0.01, 0.03], two-tailed paired t-test on the first two stimulus
frames). The amplitude reduction was approximately 43% (Eq. (5))
from the non-switch trials, and then recovered over time. The ampli-
tudes of this kernel reduction were not significantly different between
long and short cue-stimulus intervals (CSI ≤ 0.72 s vs. > 0.72 s;
t(7) = −0.52, p = 0.621, Cohen’s d = −0.18, 95% CI = [−0.9, 0.6],
BF01 = 2.66 indicating anecdotal evidence for the null hypothesis).
Aside from this initial reduction, there was no noticeable difference in
the kernels between switch and non-switch trials.

Inspired by the observed kernel patterns, we added a dynamic
sensory weighting function to the evidence accumulation model
(Fig. 3c inset; Eq. (14)). Theweightwas constant in thenon-switch trials;
however, in the switch trials, it is a ramp function that starts with an
initially reduced amplitude winit at stimulus onset and recovers to the
baseline level at time trecover. While this function modulates sensory
evidence, our model is agnostic of whether such modulation occurs
during sensory processing or during the conversion of sensory infor-
mation into accumulated evidence (see Discussion section). Hereafter,
we collectively refer to this as a reduction in the efficiency of proces-
sing sensory evidence. To test if this efficiency reduction alone was
sufficient to account for the behavioral changes in the switch trials, we
started with the model parameters fitted to the non-switch trials and
allowed the model to change only these two additional parameters
(winit and trecover) to fit the behavioral data in the switch trials.

This extended model accurately accounted for participants’
choices (Fig. 3d top), mean RTs (Fig. 3d bottom), and RT distributions
in the switch trials (Fig. 3e; R2 = 0.80 ± 0.03 for choice and RT
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distributions in switch trials). The fitted parameters showed approxi-
mately half the amplitude of sensory sensitivity at the stimulus onset
on switch trials (winit = 0.38 ± 0.12) that recovered in a few hundred
milliseconds (trecover = 562 ± 159 ms). This led to a reduction in the
amplitude of the simulated psychophysical kernels, which was in good
agreement with the observed data (Fig. 3g; R2 = 0.58). This reduced
sensory weight delayed the time required to reach a bound, resulting
in longer average RTs. Note that thesemodel outcomes also depended
on how the weighting function modulated noise in the accumulation
process (Eq. (15) and (16)), as discussed in Supplementary Fig. 3. In
contrast to RTs, choice accuracy was almost unaffected because the
reduction in sensory weight was transient and sufficient evidence
could be accumulated during the subsequent long integration time.
Overall, this simple addition to the decision-making model quantita-
tively accounted for behavioral patterns in switch trials.

We further confirmed that no other mechanisms accounted for
the observed behavioral results. Multiple parameters in the evidence
accumulation model can increase RTs; however, changing these
parameters yields choice accuracy, RTs, and psychophysical kernels
that are distinct from the observed data (Fig. 4 and Supplementary
Fig. 4). For example, increasing the non-decision time in the model
(Fig. 4a) prolongs RTs uniformly across stimulus strengths without
affecting choice accuracy, thus explaining the observed choice and
mean RTs (Fig. 4b), but it fails to account for the patterns of the psy-
chophysical kernels (Fig. 4c). A longer non-decision time does not
produce an initial reduction in the onset-aligned kernel but shifts the
peak of the response-aligned kernel that reflects the timing of the

bound crossing. However, this pattern was not observed in the
actual data.

Another alternative is a leak in the evidence accumulation process
(Supplementary Fig. 4b), which leads to a reduced amplitude of the
kernel near the onset of the stimulus39. However, this results in an
increase in RTs for difficult stimuli because they require more time to
reach a bound and are thus more affected by leakage. This change in
RTs is inconsistent with the observed data. Similarly, increasing the
decision bound or decreasing the sensory sensitivity (drift rate)
(Supplementary Fig. 4c-e) led to longer RTs, but their patterns and
effects on choice accuracy and psychophysical kernels were distinct
from the data. In brief, higher decision bounds improve the overall
accuracy and increase RTs, especially for more difficult stimuli (Sup-
plementary Fig. 4c). Lower sensory sensitivities deteriorate overall
accuracy and increase RTs, especially for easier stimuli (Supplemen-
tary Fig. 4d). A combination of the two evenly increases RTs for all
difficulty levels with little effect on choice accuracy. However, it
reduces the overall amplitude of the psychophysical kernels39, instead
of only reducing the initial part of the kernel (Supplementary Fig. 4e).
Overall, none of these alternative model parameters satisfactorily
account for the effects of task switching, and the fitting qualities of
these models estimated as the Bayesian information criterion (BIC)
were consistently greater than our main model (Fig. 4g), indicating
poorer fits.

Our modeling framework could also quantitatively confirm that
the observed switch cost is not owing to the lack of sufficient task
preparation time prior to the stimulus presentation (Fig. 4d-f).

Fig. 3 | A brief initial reduction in sensoryweight accounts for choices, reaction
times, and psychophysical kernels. a Psychophysical kernels (Eq. (4)) along the
task axis aligned to stimulus onset (left) and participants' response (right). The
dynamics of the kernels for the non-switch trials (black) were similar to those
observed previously and consistent with a bounded evidence accumulation
mechanism39. The kernels for the switch trials (red), by comparison, showed a brief
reduction in amplitude at stimulus onset. Plots for individual participants are
shown in Supplementary Fig. 2. b The kernels along the task-orthogonal axis were
near zero, indicating that the orthogonal information did not influence partici-
pants' decisions in both switch and non-switch trials. c An evidence accumulation
model that accounts for both switch and non-switch trials. The model receives

fluctuating sensory information, integrates the evidence toward decision bounds
and, when it reaches a bound, commits to the choice associated with that bound.
Reaction time is the sum of bound crossing time and non-decision time, including
sensory and motor delays. In switch trials, we added a brief reduction in sensory
weight (inset). d, e The model accurately fits choices (d, top), mean reaction times
(d, bottom), and reaction time distributions (e; cumulative distributions are shown
for visualization) for both switch and non-switch trials. f, g The same model
accurately explains the patterns of the psychophysical kernels. The data traces are
the same as in a. a, b, d–g Data are presented as mean values ± S.E.M. across
participants; model predictions are presented as mean values across participants;
n = 8 participants.
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Suppose that participants need time to prepare for a task switch
based on a context cue, and if the preparation time exceeds a cue-
stimulus interval (CSI), they cannot initiate decision formation and
therefore would ignore the initial part of the stimulus sequence
(Fig. 4d).Wemodeled the preparation time as a Gaussian distribution
and fitted the switch trials. This model showed poorer fitting per-
formance (task preparation model vs. main model: ΔBIC = 57.6;
positive BIC indicates better fits by themainmodel). As expected, the
model predicted a smaller reduction in the initial portion of the
stimulus-aligned kernel with longer CSIs, which was inconsistent with
the data (Fig. 4e). Accordingly, the model systematically deviated
from the data, which did not show clear dependence of the increase
in RTs on CSIs (Fig. 4f).

Finally, we found no evidence of interference from the task-
irrelevant rule. Because our stimuli had the same degree of stimulus
fluctuations along the task-orthogonal axis, we could perform a psy-
chophysical reverse correlation using these orthogonal fluctuations.
The resulting kernels had nearly zero amplitude throughout the sti-
mulus presentation period (Fig. 3b). This suggests that the initial
weight reduction was not due to residual attention or faulty accumu-
lation of task-orthogonal information.

Altogether, we showed that longer RTs in the switch trials
occurred because of the reduced efficiency of processing sensory
evidence at stimulus onset, which recovered within a few hundred
milliseconds. This reduction was evident in psychophysical kernels,
and our modeling framework confirmed that this mechanism alone
was sufficient to explain all aspects of behavioral changes from non-
switch to switch trials.

Task switching impairs choice accuracy when stimulus duration
is limited
A key implication of the above observations is that task switching
influences evidence accumulation in perceptual decision-making.
However, it did not have a clear influence on choice accuracy, unlike

findings from multiple previous studies12,21, because participants were
able to continue accumulating evidence after the sensory weight
recovered, thusmaintaining performance at the expenseof longer RTs
(Fig. 3c). This interpretation predicts that when the stimulus duration
is externally constrained by the environment, participants should now
show impaired accuracy in switch trials. In contrast, the accuracy
would not change if the increased RTs were due to a process irrelevant
to decision formation, such as motor preparation.

To test this prediction, we conducted a modified experiment
(Fig. 5a) in which we fixed the stimulus duration to 320–640 ms (in
steps of 106.7ms stimulus frames, following a geometric distribution),
while keeping the other experimental parameters identical. In linewith
our prediction, we observed reduced choice accuracy in the switch
trials (Fig. 5b; see Supplementary Fig. 5 for individual participants;
change in logistic regression slope α1, switch = −1.5 ± 0.3, Eq. (6);
t(6) = −4.9, p = 0.003, Cohen’s d = −1.8, 95%CI = [−2.2, −0.7], two-tailed
t-test). The psychophysical thresholds were systematically higher in
switch trials for a range of the CSIs (Fig. 5c; F(1, 51) = 29.0, p < 0.001,
ANOVA with linear mixed-effects model), and this did not depend on
the CSIs (F(3, 51) = 0.3, p = 0.838, BF01 = 22.2). Furthermore, we still
observed a small increase in RTs in the switch trials (Fig. 5d; the offset
of chronometric function β0, switch = 0.03 ± 0.01, Eq. (3); t(6) = 4.7,
p = 0.004, Cohen’s d = 1.8, 95% CI = [0.01, 0.05], two-tailed t-test; ~ 30
ms longer on average across stimulus strengths). This was expected
from the model because the probability of reaching a decision bound
before stimulus termination should be lower in switch trials. Thus, task
switching affects decision formation, leading to longer RTs or lower
accuracy, depending on the accessibility to further sensory inputs.

Switch cost depends on sensory features to be switched
Thus far, the results indicate that task switching reduces the early
weighting of sensory information for evidence accumulation, which
recovers after stimulus presentation. A key implication is that the
switch cost in our tasks occurs during the interaction between sensory

Fig. 4 | Othermodels fail to explain the behavioral data. a Amodel that explains
switch cost by increasing non-decision time. This could happen either due to a
longer duration of executing action after committing to a choice or a longer delay
before initiating the evidence accumulation. In contrast to ourmainmodel (Fig. 3c),
rule switch does not affect the accumulation time in this model. b, c The model
successfully explains the lack of change in accuracy (b, left) and the prolonged
reaction times irrelevant to stimulus strength (b, right), but fails to explain the
patterns of psychophysical kernels (c). A longer non-decision time shifts thepeakof
the response-aligned kernel, while it does not lead to the initial drop of the kernel
aligned to the stimulus onset. d A model that explains switch cost based on task
preparation. It assumes that a fixed amount of time (following a Gaussian dis-
tribution) is required to prepare for a task switch after cue onset. If this preparation

time takes longer than a cue-stimulus interval (CSI), it overlapswith an initial part of
the stimulus sequence, which is ignored in the decision-making process. e The task
preparationmodel fails to fit the initial reduction of the stimulus-aligned kernel for
long CSIs (> 0.72 s). f The model also fails to explain that the increase in reaction
times is largely stable across CSIs. The black dots are the data (same as those in
Fig. 2i). The blue line is the fit of the task preparation model averaged across
participants. The orange line is the fit of the main model (Fig. 3c). g All alternative
models we tested had greater Bayesian information criterion (BIC) than our main
model, indicating that the main model best fitted the data. The alternative models
not explained here are described in Supplementary Fig. 4. b, c, e, f Data are pre-
sented as mean values ± S.E.M. across participants; model predictions are pre-
sented as mean values across participants; n = 8 participants.
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and decision-making processes rather than within cognitive control
mechanisms that switch internal states according to context cues. In
this last section, we report a separate line of observations that further
substantiate this claim; even under similar task-switching designs with
similar task difficulty, the magnitude of the switch cost dramatically
varies depending on the sensory features that participants were asked
to switch.

We compared three different context-switching tasks: our main
reaction-time version of the face categorization task (Fig. 6a), a face
(identity) versus color switching task (Fig. 6b), and a motion versus
color task (Fig. 6c). Motion versus color tasks have often been used to
study context-dependentdecisionmaking8,9,50. In our task, participants
viewed stochastic moving dots colored purple or green and reported
either the overall direction of motion or the dominant color. As an
intermediate between this and the face categorization task, we
designed a face versus color categorization task (Fig. 6b). In this task,
participants reported either the identity or the color of the face. In all
tasks, stimuli were defined in 2D space, and participants categorized
the stimuli based on one of the two axes. The basic task structure,
including the frequency of the rule switch and the duration of the CSI,
was kept identical across tasks. Furthermore, participants’ overall
choice accuracy and RTs were comparable across the tasks (Fig. 6d),
and their performance was similar between the two task rules in each
task (Supplementary Fig. 6a). This ensures that the overall task diffi-
culty or imbalance in task difficulty between the two rules27,47 does not
affect the switch cost.

Despite this carefully tailored comparison, we found substantial
differences in the switch costs across the three tasks (Fig. 6d; Sup-
plementary Fig. 6b). As demonstrated earlier, in our main face

categorization, participants showed an increase of approximately 170
ms inoverall RTs across a rangeof stimulus difficulties. By contrast, the
motion versus color taskhad amuch smaller rule switch effect ( ~ 43ms
increase in overall RTs; the difference from the main face task:
t(13) = −5.3, p < 0.001, Cohen’s d = −2.7, 95% CI = [−0.18, −0.08], two-
tailed t-test; see Supplementary Fig. 7b for individual participants). The
face versus color task had an intermediate level of the rule switch
effect ( ~ 113 ms increase in overall RTs; the difference from the main
face task: t(13) = −2.3, p = 0.041, Cohen’s d = −1.2, 95%
CI = [−0.110, −0.003]; see Supplementary Fig. 7a for individual parti-
cipants). In all tasks, the effect on choice accuracy was limited.

We also found that the increases in RTs did not have a significant
difference between both directions of the rule switch (i.e., from context
1 to 2 versus from context 2 to 1) in all three tasks (Fig. 6e; the offset of
chronometric function β0, switch in Eq. (3) between switch directions:
p ≥ 0.393, BF01 ≥ 2.03 across all tasks indicating anecdotal evidence for
the null hypothesis, two-tailed paired t-test). Indeed, the RT increases in
the three experiments were better explained as the costs associated
with the pairs of features to be switched rather than as the costs asso-
ciated with a feature being switched from or switched to (pair cost vs.
from feature cost:ΔBIC = 12.12; pair cost vs. to feature cost:ΔBIC = 11.83;
positive BIC indicates better fits by the pair-cost model; see Methods).
Several previous studies have reported altered RTs when switching to
the judgment of facial expressions from other judgments, and inter-
preted the results as the prioritization of biologically significant
features43–45. However, this effect was not observed in our experiments,
probably because our face stimuli involved only mild changes in emo-
tion, which did not trigger expression-specific effect.

The dependency of the switch cost on specific perceptual tasks
(Fig. 6f) supports the idea that the cost cannot be explained as
switching between abstract contextual states in amanner independent
of the specific sensory features to be discriminated. Rather, the cost
can reflect the difficulty of switching between different sensory read-
outs, which aligns with our finding of the recovery of sensory pro-
cessing efficiency after stimulus onset. A comparison of the three tasks
alone does not allow us to determine what kinds of sensory features
are more difficult to switch between. We speculate that switching
features with more overlapping sensory representations can be costly
as faces and colors are both encoded in the ventral visual areas (see
Discussion section), although it is a formidable challenge to experi-
mentally prove this idea. Nonetheless, the results demonstrate that
rule switching is costly not merely because the system requires the
transitioning between abstract contextual states.

Discussion
Humans show a reduction in the accuracy or speed of perceptual
decisions after a task rule switch, which has been attributed to top-
down cognitive control that requires time to adjust its process17,18,23.
What is puzzling, however, is that even when sufficient time is given,
people still exhibit substantial switch costs21,29–32,43. We revisited this
long-standing observation using recent behavioral measurements and
modeling techniques developed to study perceptual decision-
making39–42. We found that there was a reduction in the efficiency of
processing sensory evidence at the moment of task switching, which
recovered within a few hundred milliseconds after stimulus presenta-
tion (Fig. 3a). By incorporating this efficiency reduction into an evi-
dence accumulation model, we could accurately explain multiple
aspects of the behavioral data in both the switch and nonswitch trials
(Fig. 3c–g). Furthermore, we found that the cost depended sub-
stantially on the type of sensory feature to be switched, even when the
task structure remained the same (Fig. 6). We suggest that a critical
limitation in perceptual decision-making is the flexible switching of the
sensory readout, which cannot be fully adjusted based on a context
cue alone, but requires the presence of a stimulus to be prop-
erly tuned.

Fig. 5 | When stimulus duration is limited, task switching affects choice accu-
racy. a Our main model (Fig. 3c) predicts that, if participants are prohibited from
accumulating more evidence, task switching will directly affect choice accuracy
since the reduced weight cannot be compensated for by longer reaction times. To
test this prediction, we performed a modified version of the face categorization
task in which the stimulus duration was fixed (following a truncated exponential
distribution; range, 320–640ms in 106.7ms steps). The remaining task parameters
were kept identical to those of themain task.b Participants showed reduced choice
accuracy after a task switch, consistent with our prediction. Plots for individual
participants are shown in Supplementary Fig. 5. c The psychophysical thresholds
(i.e., the morph level at 81.6% correct rate according to Eq. (6)) were consistently
larger in switch trials across the range of the cue-stimulus intervals (CSI), similar to
the main task (Fig. 2i). The trials were divided into four quantiles. d Reaction times
were still longer in the switch trials. This was also expected from the model.
b–d Data are presented asmean values ± S.E.M. across participants (b, d); Data are
presented as mean values across participants (c); n = 7 participants.
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Our key finding is attributing the effect of task switching to a
process thatuses sensory information to formadecision, in contrast to
the dominant idea that switch costs reflect the process of switching
abstract cognitive states. The costs we observed seem to be unrelated
to the processes of recalling a task rule; we did not find that stimuli
with higher strength (e.g., a clearly happy face) along either the task or
orthogonal axes facilitated or hindered task switching (Fig. 2c, d),
implying that the stimuli themselves36 or the conjunction of stimuli
and context cues37,38 did not facilitate rule recall. The reduced effi-
ciency appeared to be limited to the first few hundreds milliseconds
(Fig. 3a), which corresponds to an early phase of evidence
accumulation51,52. Thus, the effect is unlikely to be related to the con-
flicting action plans between the two rules. Indeed, we did not observe
clear congruency effects (Fig. 2j) or interference from task-orthogonal
sensory information (Fig. 3b). This is also consistent with recent

findings showing a delay in the early components of event-related
potentials after a task switch34,35. We also ruled out the possibility of
sensory adaptation, priming, or history effects53,54 because we did not
find significant correlations between the stimulus strength of previous
trials and the RT increase (Supplementary Fig. 8). Taken together, we
suspect that the reduced efficiency is primarily related to the trans-
formation of sensory information into the decision variable.

Then, why does the processing efficiency decrease after task
switching for certain perceptual tasks and why does it recover quickly
after stimulus onset? While speculative, we hypothesize that this
reflects the precision limit of top-down control in adjusting the read-
out of sensory information to form decision evidence based on con-
text cues alone. After the presentation of a task context cue, decision-
making circuits can partially adapt their state to the switched rule so
that the task-relevant sensory dimension becomes effective without

Fig. 6 | Themagnitude of switch cost differs across perceptual tasks. aThemain
face task as in Fig. 1a.b Facial identity vs. color discrimination task. The identity task
was similar to that of the main face task. In the color context, participants cate-
gorized the color of face images into red or green. The face images were from the
NimStim Face set73, but the panel uses images from the Tsinghua Facial Expression
Database72 due to copyright issues. Consent was obtained for the use and pub-
lication of the face images. c Color vs. motion direction discrimination task8,9.
Participants either judged the net direction of randomdotmotions (left or right) in
the motion context or judged the dominant color of the dots (purple or green) in
the color context. d The increase in reaction times after rule switch was different
among tasks. The conventions are the same as in Fig. 2a. Plots for individual

participants are shown in Supplementary Fig. 7. e The magnitudes of switch cost
were similar between the two directions of rule switch in each task (e.g., switching
from identity to expression categorization versus switching from expression to
identity). f Graphical illustration of the cost of switching from/to different features
shows that the pairs of features being switched determine themagnitude of switch
cost. The numbers adjacent to arrows indicate the increase in reaction times (β0,
switch in Eq. (3)), which are also representedby the darkness and thickness of arrows.
Note that the expression task was replaced with the age categorization in some
participants (Supplementary Fig. 1). d–fData are presented asmean values ± S.E.M.
across participants; n = 8 participants in themain face task, n = 7 participants in the
face vs. color task, and n = 7 participants in the color vs. motion task.
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interference from the previously relevant sensory dimension (Fig. 3b).
However, the circuits cannot optimally tune the readout to convert
sensory information into the decision variable with an abstract cue
alone; an influx of actual sensory information is needed to guide the
circuits to adjust the readout. The difficulty of tuning the readout
depends on the specific pair of rules the brain has to switch (Fig. 6).We
have yet to specify what factors dictate this difficulty, but we speculate
that it is costlier to switch the readout from two overlapping sensory
representations such as two face axes or face and color, both of which
are encoded in the ventral visual areas55,56. This interpretation is con-
sistent with previous reports43. For example, switching between visual
and auditory tasks shows no residual switch cost57,58, whereas switch-
ing between male and female voice discrimination tasks shows a sub-
stantial residual switch cost59.

This interpretation is different from, and complements, recent
compelling theories using RNNs, which propose that switch costs arise
because of the extra process of making transitions between two
abstract task states in neural spaces23,25. Such an adjustment of the
internal state would explain task preparation triggered by cue onset.
We instead focused on residual switch cost (Fig. 2h, i) and explained it
as the recovery of sensory weight triggered by stimulus onset (Fig. 3),
which depended on the specific sensory features to be switched
(Fig. 6). These results suggest that switch cost also reflects the inter-
action between sensory and decision-making systems. We consider
rule switching in perceptual tasks to be a multifaceted process that
involves both state transition in associative brain areas and adjustment
in readout through communication between associative and sensory
areas7.

Our interpretation is also partly related and also distinct from
other previously proposed hypotheses regarding the source of the
residual switch cost. We highlight the most notable hypotheses here.
First, some previous studies have suggested that residual switch costs
arise because participants occasionally fail to engage and wait until
stimulus onset to prepare for a rule switch29. This claim was made
because RTs in switch trials are sometimes as fast as those in non-
switch trials, in which participants could be fully prepared. However,
such broad distributions of RTs can be produced by noisy evidence
accumulation mechanisms without assuming engaged or disengaged
states (Fig. 3e). Furthermore, the engagement account does not
explain why failure arises in some perceptual tasks but not in others
(Fig. 6). Second, several previous studies used the drift-diffusion
model to examine switch cost and found effects on non-decision time
after a rule switch60–62. Indeed, the patterns of the psychometric and
chronometric functions appeared as if there was a change in non-
decision time (Fig. 4a, b). It was only through fine-grained analyses of
psychophysical reverse correlations that we correctly attributed them
to the initial reduction in sensory weighting (compare Fig. 4c with
Fig. 3g). Finally, some previous studies proposed that humans have
limited ability to shift their attention to a relevant stimulus dimension
before a stimulus appears34,35,43. This idea is most relevant to our
hypothesis and could be pointing to the same process we have pro-
posed. We hope that further neurophysiological investigation will
revealmorefine-grainedmechanistic accounts for this key limitation in
the interaction of sensory and decision-making systems.

This study identified a specific process that gives rise to switch
costs, but it should be noted that switch costs likely result from mul-
tiple factors whose relative contributions depend on task
details17,18,20,31,63,64. For example, studies using shorter CSIs than ours
have identified part of switch cost that was strongly dependent on the
CSI22. This likely reflects a process more directly related to internal
preparation based on contextual cues23,25. On a related note, when
there are multiple cues for one context, a cue change alone without
task switching degrades behavioral performance, known as the cue
switch cost28,37,38,65. Such cue-encoding mechanisms are beyond the
scope of our decision-making models. Regarding response encoding,

the congruency effect or response conflict is often observed along
with switch costs47,66,67, whereas our behavioral results lacked these
effects (Fig. 2j). These are typically associated with tasks using firmly
established associations between stimuli and responses, such as the
Stroop task27. The lack of these effects in our design might stem from
arbitrary associations between face stimuli and saccade directions. We
expect that the diverse effects of task switching observed in previous
studies can be investigated by extending our quantitative modeling
framework to different task structures.

This study focused on switching between perceptual tasks, but
similar principles may apply to other cognitive tasks. The residual
switch cost has been reported in many non-perceptual tasks, such as
number or lexical categorizations18. Although the sensory readoutmay
not be a major bottleneck in these tasks, the process of converting
sensory inputs into decision evidence may still require fine adjust-
ments in circuit computations in these tasks. Although top-down
control can partially align these circuit computations with a given task
demand, detailed computationsmay require further adjustments after
a stimulus is presented and the circuits start to operate, leading to
limited behavioral performance unique to biological neural networks.

Method
Participants and experimental setup
Twenty human participants (20–40 years old, 7 males and 13 females,
students or employees at the Chinese Academy of Sciences) were
recruited for the experiments. Our participant sampling strategy did
not factor in gender, as it was unlikely to influence the basic perceptual
decision-making processes we studied. All participants had normal or
corrected-to-normal vision and were naïve to the purpose of the
experiment. Written informed consent was obtained from all partici-
pants prior to experiments. Eachparticipantwas compensated 60CNY
per hour for their time. All experimental procedureswere approved by
the Institutional Review Board of the Center for Excellence in Brain
Science and Intelligence Technology, Institute of Neuroscience, Chi-
nese Academy of Sciences.

The main context-dependent categorization task (Fig. 1) included
eight participants, while the fixed duration task (Fig. 5), the face versus
color task (Fig. 6b), and themotion versus color task (Fig. 6c) included
seven participants each. Eight participants took part in more than one
experiment. For the latter three tasks, we initially recruited four, five,
and three participants, respectively. Upon reviewers’ request, we per-
formed additional data collection during the revision and added three,
two, and four participants to the experiments tomake the total sample
size seven. Here, we report the results combining these data collected
post hoc, as therewasnot a sufficient sample size to perform statistical
tests independently. The results did not change as a consequence of
adding participants to the sample post hoc. Our sample sizes were
relatively small because we sought to collect a large number of trials
from each participant (1500–3000 trials per participant; a total of
79,480 trials in this study) after extensive practice sessions (~ 2000
training trials per participant prior to data collection). This was aimed
to obtain as much reliable behavioral data as possible from individual
participants68. Using a post-hoc sensitivity analysis, we estimated that
our sample size (7–8) could detect an effect with 80% power if the
standard deviation across participants was less than 75% of the effect
size69. When statistical tests did not show significance, we supple-
mented our analysis with the Bayes factor (BF01, relative likelihood of
the data under the null hypothesis compared to the alternative
hypothesis) and interpreted the results cautiously. According to cthe
onvention, BF01 between 1 and 3.2 suggests anecdotal evidence for the
null hypothesis, between 3.2 and 10 indicates substantial evidence, and
between 10 and 100 reflects strong evidence70.

Throughout the experiments, participantswere seated in aheight-
adjustable chair in a semi-dark room with their chin and forehead
supported by a tower-mounted chinrest. The chinrest had a fixed
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position to ensure a stable viewing distance (57 cm) from the cathode-
ray-tube monitor (17-inch IBM P77 and 21-inch SUN GDM-5010P; 75 Hz
refresh rate; 1024 × 768 pixels screen resolution). Stimulus presenta-
tion was controlled using the Psychophysics Toolbox71 and MATLAB
(v2019b,MathWorks,MA,USA). Eyemovementsweremonitoredusing
a high-speed infrared camera (Eyelink; SR Research, Ottawa, Canada).
The gaze position was recorded at 1 kHz. Data was analyzed using
MATLAB (v2019b, MathWorks, MA, USA).

Task designs
Context-dependent face categorization task
To investigate flexible task switching, we designed a context-
dependent face categorization task (Fig. 1a, b). We chose face cate-
gorization because previous studies successfully explained behavior
using a simple evidence accumulation model with psychophysical
reverse correlation40. Furthermore, face stimuli can be naturally cate-
gorized along multiple sensory dimensions such as identity, expres-
sion, and age, making them suitable for studying flexible rule
switching.

Participants categorized faces defined in a two-dimensional (2D)
face space (Fig. 1a) according to one of two categorization rules.
Categorization rules were switched every 2–6 trials within the experi-
mental blocks and were indicated by the color of a fixation point such
that participants were always informed of the rule. The two rules were
facial identity versus expression categorization for six of the eight
participants who participated in this experiment, and facial identity
versus age categorization for the remaining two of the eight partici-
pants. We used these two conditions to ensure that the switch cost
effects were not due to specific types of facial features. For the identity
rule, participants categorized faces into oneof two facial identities. For
the expression and age rules, participants categorized faces as happy/
sad or old/young. As the behaviors of these two groups were com-
parable (Supplementary Fig. 1), we averaged the results in the main
section.

Each trial began when participants fixated on a fixation point at
the center of the screen (diameter, 0.5∘). The color of the fixation point
was either cyan or magenta, cuing one of the two categorization rules.
After a short delay (150–300 ms, truncated exponential distribution),
two white target dots appeared 7∘ above and below the fixation point.
Shortly thereafter (300–1200ms, truncated exponential distribution),
a face stimulus (size, ~ 4∘ × 4∘) appeared on the screen parafoveally
(stimulus center, 1.5∘ to the left of the fixation point). We placed the
stimuli parafoveally to encourage participants to judge the face sti-
mulus as a whole, rather than focusing on local features. Participants
reported the category of the presented face by making a saccade to
one of the two targets whenever they were ready (reaction-time task).
Associations between face categories and target positions were
counterbalanced across participants in each context. The stimulus was
extinguished immediately after saccade initiation. If participants did
notmake a decisionwithin 5 s, the trial was aborted (< 0.2% trials for all
participants). Distinct auditory feedback was delivered for correct and
incorrect choices. When the face was ambiguous (i.e., 0%morph level,
halfway between the two prototypes on the morph continuum), the
correct feedback was delivered in a random half of the trial. Following
feedback, the next trial began after a 1.2 s inter-trial interval.

We created a 2D face space by continuously morphing four pro-
totype faces. The prototype faces were obtained from the Tsinghua
Facial Expression Database72 and the NimStim Face set73, which con-
tains photographs of the same identities with different expressions. To
create young/old prototypes, we used free software74 that synthesizes
younger or older faces from an original photograph. Morphed facial
images were created from the prototype faces using a custom
program40. The program linearly interpolates the positions of manu-
ally defined anchor points on the facial images and the textures inside
the tessellated triangles defined by the anchor points. This algorithm

can also independentlymorphdifferent facial features (eyes, nose, and
mouth). In Figures 1, 5, 6, images from theNimStim Face set used in the
experiments were replaced with images from the Tsinghua Facial
Expression Database to avoid copyright issue. Permission was
obtained for the use of the images from the Tsinghua Database.

Using our custommorphing program, we generated two stimulus
axes from four prototypes (e.g., images of happy person A, sad person
A, happy person B, and sad person B), but we took extra caution in
making the two axes orthogonal (factorial)75. For example, the morph
axis connecting the happy and sad faces of identity A (AH, AS) is not
equivalent to the morph axis connecting the happy and sad faces of
identity B (BH, BS). The factorization of the two axes requires the
construction of the following two morph vectors and morphing faces
along these two axes:

Vid = ðAH +ASÞ�ðBH +BSÞ
4

Vexp = ðAH +BH Þ�ðAS +BSÞ
4

ð1Þ

The center of the face space (0%morph level along both stimulus axes)
is the average of all four faces (AH +AS +BH +BS

4 ) and ± 100% morph levels
for each axis correspond to the addition or subtraction of the above
vectors to the average face. On each trial, we sampled onemorph level
from the following 11 levels for both axes regardless of the categor-
ization rules:−96%,−48%,−24%, −12%, −6%, 0%, +6%, +12%, +24%, +48%,
+96%. As shown in Supplementary Fig. 1a,b, the participants had
roughly equal discriminability along the two axes.

We added random temporal fluctuations in morph levels to the
sampled value in each trial to examine how participants weighted the
evidence conferred by the face stimuli over time (i.e., psychophysical
reverse correlation). The morph level was randomly sampled every
106.7 ms (eight monitor frames) from a Gaussian distribution with a
standard deviation (SD) of 20%. This fluctuation duration provided us
with sufficiently precise measurements of participants’ weighting
characteristics in their ~ 1 s decision time, while the duration was long
enough to ensure a subliminal transition ofmorph levels. Between the
two morphed face images, we interleaved a noise mask (phase ran-
domization of 0% morph face) with a smooth cosine transition func-
tion during the eight monitor frames40. This mask prevented
participants from noticing fluctuations in morph levels during stimu-
lus presentation. Random fluctuations were applied independently to
each facial feature (eyes, nose, and mouth) along both the task and
orthogonal axes while keeping the average morph level constant
within a trial. Although the independent fluctuations across facial
features allowed us to examine the spatial weighting of evidence40,
most of our analyses used the average morph levels of the three fea-
tures because our primary goal was to test temporal weighting. The
psychophysical kernels for the individual features are shown in Sup-
plementary Fig. 9.

We collected data from eight participants for this task (24,358
trials in total; 3045 ± 125 trials per participant). Prior to the main data
collection, the participants underwent extensive training (on average,
5 sessionswith 2,200 trials) to ensure stable behavioral accuracy under
both rules.

Fixed stimulus duration task
In the reaction-time (RT) task described above, participants showed
longer RTs in the switch trials, but their choice accuracy was main-
tained, possibly because they were able to collect more evidence with
additional RTs. Therefore, we designed an alternative task (Fig. 5a) in
which we limited the stimulus duration to test whether choice accu-
racy deteriorated when the collection of additional evidence was
prohibited.

In each trial, a stimulus was presented for a variable duration
(truncated exponential distribution; range, 320–640 ms, in steps of
106.7 ms; mean, 416 ms). This distribution has a flat hazard rate and
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minimizes the participants’ ability to anticipate the end of a stimulus76.
The fixation point disappeared with stimulus termination as the go
cue. Participants had to select a target within 0.7 s after the go cue (the
proportion of timeout trials: < 7.4% for all participants). The RTs in this
task were defined as the time interval between the stimulus offset and
saccadic response. The remaining task parameters, including the sti-
mulus design and duration of the CSI, were identical to those in the
RT task.

Sevenparticipants performed thisfixed-duration task (21,513 trials
in total; 3,073 ± 107 trials per participant). Three also participated in
the RT task with the same facial stimulus set. All participants received
extensive training before main data collection (on average, 5 sessions
with 3,000 trials).

Motion versus color and face versus color categorization tasks
To test whether similar degrees of switch costs occur with per-
ceptual tasks using simpler sensory features, we performed
motion versus color categorization of colored stochastic moving
dots (8,9,50; Fig. 6c). In the motion task, participants reported
whether the dots were overall moving to the left or right by
making a saccade to one of the two targets positioned to the left
or right of the fixation point. In the color task, participants
reported whether the majority of the dots were purple or green
by choosing one of the same two targets. The two targets were
colored purple and green to indicate the association. The overall
trial structure was similar to that of the RT version of the face
task. To avoid interference with color judgment, task contexts
were conveyed by the shape of the fixation point rather than by
its color (white triangle or cross). A random dot stimulus
appeared within a 6∘ circular aperture centered at the fixation
point. It consisted of three independent sets of moving dots
displayed in consecutive frames77. Each set of dots was shown for
one video frame and then replotted three frames later (Δt = 40
ms; density, 16.7 dots/deg2/s). When replotted, a subset of dots
was offset from their original location (speed, 5 ∘/s), whereas the
remaining dots were placed randomly. The colors of the dots
were chosen to be equiluminant green (L = 20.0, x = 0.386, y =
0.494) or purple (L = 20.0, x = 0.224, y = 0.182).

The stimulus strength of the motion (motion coherence) was
defined as the percentage of dots moving coherently in the correct
direction. The stimulus strength of the color (color coherence) was
defined as the difference between the percentage of green and purple
dots8,50. For example, +100% color coherence meant all the dots were
green,-100% color coherence meant all the dots were purple, and 0%
color coherence meant that green and purple dots were equally likely
to be present. On each trial, a motion coherence was chosen from the
following set: −51.2%, −25.6%, −12.8%, −6.4%, −3.2%, 0%, +3.2%, +6.4%,
+12.8%, +25.6%, +51.2%. A color coherence was chosen from a different
set to match the difficulty with the dots task: −100.0%, −51.2%, −25.6%,
−12.8%, −6.4%, 0%, +6.4%, +12.8%, +25.6%, +51.2%, +100.0%. For visua-
lizationpurposes (Fig. 6d, e, right panel), we scaled the eleven stimulus
strengths of each task to range from −1 to 1 and denoted it as relative
stimulus strength.

We also performed a face versus color categorization task as
a control (Fig. 6b). In this task, participants categorized a colored
facial stimulus according to its facial identity or color. As in the
motion versus color task, the task contexts were indicated by the
shape of the fixation point (white triangle or cross). Two proto-
type facial identities were chosen from the NimStim Face set73,
and the faces were uniformly colored with a value in the CIE-1931
xy color space linearly interpolated between the two prototype
colors. Because we found that the participants had different
color-discrimination thresholds, we chose different prototype
colors for different participants to match the task difficulty

between the face and color contexts. These prototypes were red
(set 1: x = 0.374, y = 0.274; set 2: x = 0.371, y = 0.318; set 3: x =
0.369, y = 0.339; set 4: x = 0.368, y = 0.350) and green (set 1: x =
0.361, y = 0.443; set 2: x = 0.365, y = 0.400; set 3: x = 0.366, y =
0.378; set 4: x = 0.367, y = 0.368). The luminance of each image
pixel was kept constant. The stimulus strength of color was
defined as the distance from the prototypes; each prototype
corresponded to-100% and 100% strength, and the intermediate
values were their linear interpolation. We had 11
levels: −96%, −48%, −24%, −12%, −6%, 0%, +6%, +12%, +24%, +48%,
+96%. To approximate the fluctuations in sensory evidence that
occurred in the other tasks, we introduced a random variation in
color to a stimulus. The color strengths were randomly sampled
from a Gaussian distribution with an SD of 20% and updated every
13.3 ms (one monitor frame). This rapid fluctuation mimicked
the stochasticity of color strength in the motion versus color
task, where the color of each dot was resampled in every
monitor frame.

Seven participants performed the motion versus color task
(20,583 trials in total; 2940 ± 15 trials per participant), and seven par-
ticipants performed the face versus color task (13,026 trials in total;
1,861 ± 81 trials per participant). Participants received extensive
training for each task before main data collection (on average, 4 ses-
sions with 2,000 trials).

Data analysis
Psychometric and chronometric functions
Throughout the analyses, we defined the trials immediately after a rule
switch as switch trials and the rest of the trials as non-switch trials. The
first trial of each experimental block was excluded. We confirmed that
history effects such as post-error slowing78 did not affect our conclu-
sions (Supplementary Fig. 8a,b).

To quantify the differences in the participants’ behavioral per-
formance between the switch and non-switch trials, we fitted the fol-
lowing logistic function to the choice data for each participant:

logit Pðchoice2Þ� �
=α0 +α0, switch � I + ðα1 +α1, switch � IÞs ð2Þ

where logit(p) = log(p/(1 − p)), s is the morph level (ranging from -1 to 1)
and I is an indicator variable that is 0 for non-switch trials and 1 for switch
trials. α0 and α1 are regression coefficients reflecting choice bias and
accuracy in non-switch trials, whereas α0,switch and α1,switch reflect the
difference in bias and accuracy between non-switch and switch trials.

The difference in the mean RTs between the switch and non-
switch trials was evaluated using a hyperbolic tangent function:

T =β0 +β0, switch � I +
β1

s
tanh β2 � s

� � ð3Þ

where T denotes mean RTs, β1 and β2 are regression coefficients that
reflect the dependency of RTs on stimulus strength, and β0 is a
stimulus-independent term. Because the increase in RTs for switch
trials was nearly independent of stimulus strength (Fig. 2c), we used
β0,switch as a metric to quantify the overall increase in RTs in switch
trials (ΔRT in Figs. 2i, 4f, 6f).

Psychophysical reverse correlation
To quantify the effect of stimulus fluctuations on choice, we per-
formed psychophysical reverse correlations39,46. Psychophysical ker-
nelsK(t)were calculated as thedifference in the averagefluctuations of
the morph levels, conditional on the participants’ choices, as follows:

KðtÞ= E ½sðtÞj choice1 � � E ½sðtÞj choice2 � ð4Þ
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where s(t) represents the morph level of the facial stimulus at time t.
Although the morph levels fluctuated independently for the three
facial features (eyes, nose, and mouth), we averaged them for each
stimulus frame to focus on the effects of temporal fluctuations. When
averaging, we weighted the fluctuations of each feature according to
the fitted sensitivity parameters of that feature in the drift-diffusion
model (ke, kn, km in Eq. (10); see below) so that a more informative
feature makes a larger contribution to the kernel. The psychophysical
kernels for the individual features are shown in Supplementary Fig. 9,
and are consistent with our main conclusions. We used trials with low
average morph levels (average level 0–12%), in which there was a
sufficient number of trials for both choices. For trials with nonzero
average morph levels, the average was subtracted from the fluctua-
tions. We used fluctuations up to the median RT aligned to the
stimulus or saccade onset to ensure that at least half of the trials
contributed to the kernels at all times. Three-point boxcar smoothing
was applied to the kernels for denoising, but the unsmoothed data
were used to calculate the fitting accuracy of model psychophysical
kernels.

We also generated psychophysical kernels for the motion
versus color task and the face versus color task (Fig. 6; Supple-
mentary Fig. 6b). In the motion versus color task, stimuli were
stochastically generated, but this stochasticity was not explicitly
defined by the experimenters, unlike the stimulus fluctuations in
the main face task. We therefore estimated their stimulus fluc-
tuations post-hoc. For the motion, we followed past works39,79 and
performed a motion energy analysis to generate the relative
energy for leftward and rightward motion from random dot
positions. We used the same filter parameters as in Okazawa
et al.39. For the color, we calculated the proportion of dots with
the correct colors. In the face versus color task, the color was
explicitly defined as a color value at each stimulus frame. Because
these fluctuations happened at a much faster time scale (one
stimulus frame: 13.3 ms) than the face fluctuations, we used
additional smoothing; for color signals, we applied 20-point
boxcar smoothing to frame-by-frame values and, for motion sig-
nals, we applied 5-point smoothing to the outputs of the motion
energy model.

Testing the effect of cue-stimulus interval on behavior
Our tasks had a variable delay between the onset of participants’
fixation—when they recognized the current task rule based on the
fixation point—and stimulus presentation (range, 0.45–1.50 s;
median, 0.72 s; roughly followed truncated exponential distribu-
tion but depended on participants’ fixation onset; Fig. 2g). This
cue-stimulus interval (CSI) allowed participants to prepare for
rule switching. To test the effect of CSIs on RTs (Figs. 2i, 4f), we
divided trials into seven groups based on CSIs and calculated the
difference in RTs between the switch and non-switch trials (ΔRT)
for each group. ΔRT was quantified as β0,switch in Eq. (3). A direct
comparison of raw RTs between switch and non-switch trials
yielded similar results. We performed a linear regression between
CSIs and β0,switch for each participant, then averaged the results
across participants (Fig. 2i).

The effect of the CSIs on the reduction in psychophysical kernels
was examined by dividing the trials into two groups based on the
medianCSI.We focused on the first two stimulus frames of the kernels
and defined the reduction in kernel amplitude for the switch trials as

reduction =
�Knon�switch � �Kswitch

�Knon�switch
× 100% ð5Þ

where �Kswitch and �Knon�switch represent the averaged kernel amplitudes
over the first and second stimulus frames for non-switch and switch
trials, respectively.

Discrimination threshold in the fixed stimulus duration task
To test whether the choice accuracy was affected by CSIs in the fixed
stimulus duration task, weplotted the discrimination thresholds of the
switch and non-switch trials, each divided into four quantiles of CSIs
(Fig. 5c). For each quantile, we fitted the following logistic function to
the choice data:

logit PðcorrectÞ½ �= ðα1 +α1, switch � IÞ � jsj ð6Þ

where ∣s∣ is the absolute morph level (ranging from 0 to 1), α1 is a
regression coefficient reflecting the slope of a psychometric function
in non-switch trials, and α1,switch reflects the change in the slope in
switch trials. From the fitted curve, we calculated the discrimination
threshold, which is defined as the stimulus strength at 81.6% correct
rate79.

Testing the dependency of switch cost on features to be
switched
We performed three combinations of rule switching tasks (identity
versus expression/age, identity versus color, and motion versus color
switch; Fig. 6) to examine the dependency of switch cost on stimulus
features. We sought to determine whether the increases in RTs after a
rule switchdependedon the stimulus features thatparticipants judged
before the switch, the features after the switch, or the combination of
them.We defined the increase in RTs (using β0,switch in Eq. (3)) for each
participantn and for each switch condition (switching from feature i to
j) asΔRTi→j,n, then constructed the following threemodels to explain it.

ΔRTi!j,n � Ci ð7Þ

ΔRTi!j,n � Cj ð8Þ

ΔRTi!j,n � Ci, j ðCi, j =Cj, iÞ ð9Þ

Eq. (7) and Eq. (8) accounts for ΔRTi→j,n as a cost associated with
switching from a feature i (Ci) or a cost associated with switching to a
feature j (Cj), whereas Eq. (9) assumes a cost for a pair of features i and j
(Ci,j) regardless of the switching direction. We estimated these cost
parameters using linear regression to all participants’ data in all three
tasks and determined the fitting accuracy using the Bayesian infor-
mation criterion (BIC).

Model fit and evaluation
To examine the computational mechanisms underlying the behavioral
differences between the switch and non-switch trials, we fitted several
variants of evidence accumulationmodels to thedata. Previous studies
showed that face categorization behavior without a rule switch can be
accurately explained by a drift-diffusion model that linearly accumu-
lates spatiotemporal evidence39,40. Therefore, we fitted this model to
non-switch trials and attempted to explain the switch trials using
additional mechanisms.

Drift-diffusion model for non-switch trials
To fit the non-switch trials, we employed a model previously devel-
oped for face categorization behaviors39,40. The model receives spa-
tiotemporal fluctuations in morph levels, linearly accumulates
evidence toward an upper or lower bound, and commits to the choice
associatedwith the boundwhen it is reached. RT is the sumof the time
required to reach a bound and the additional non-decision
time (Fig. 3c).

In our task, the morph levels of the three facial features (eyes,
nose, and mouth) fluctuated along both the task and orthogonal axes,
resulting in six morph levels. However, because participants rarely
confused the task rule (Fig. 2a) and did not show influences from task-
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orthogonal information (Fig. 2b), we assumed that only the task axes
contributed to forming themomentary evidence (μ(t)) in each context:

μðtÞ= k1e � s1eðtÞ+ k1n � s1nðtÞ+ k1m � s1mðtÞ ðcontext1Þ
μðtÞ= k2e � s2eðtÞ+ k2n � s2nðtÞ+ k2m � s2mðtÞ ðcontext2Þ ð10Þ

where s1e, s1n, s1m, s2e, s2n, s2m are the morph levels of the individual
facial features along the task axis, and k1e, k1n, k1m, k2e, k2n, k2m are the
sensitivities associated with them. The sensitivities for each feature
were parameterized independently for each context because facial
features can be weighted differently for different tasks40,80.

Momentary evidence is then accumulated over time to form the
decision variable (v):

vðtÞ=
Z t

0
μðτÞ+ηðτÞdτ ð11Þ

where η(τ) represents internal (neural) noise in the sensory, inference,
or integration processes, assumed to follow a Gaussian distribution
withmean0 and SD σ(t). Under these assumptions, the probability that
the decision variable has value v at time t satisfies the Fokker-Planck
equation:

∂pðv, tÞ
∂t

= � ∂
∂v

μðtÞ+0:5 ∂2

∂v2
σ2ðtÞ

" #
pðv, tÞ ð12Þ

where p(v, t) denotes the probability density. The accumulation pro-
cess started from zero evidence and continued until the decision
variable reached one of the two boundaries (± B) indicating two
choices. Thus, the above partial differential equation has initial and
boundary conditions as follows:

pðv, 0Þ= δðvÞ
pð±B, tÞ=0 ð13Þ

where δ(v) denotes the Dirac delta function. The diffusion noise (σ(t))
was set to 1 and the bound and drift rate were defined in a unit of
diffusion noise. The bound-crossing time was convolved with the
distribution of non-decision time, which was defined as a Gaussian
distribution with a mean of T0 and an SD of σT0

, to calculate the RT.
The SD, σT0

, was always set to one-third of T0 to reduce the number of
the free parameters81.

In total, the model had eight free parameters
(k1e, k1n, k1m, k2e, k2n, k2m, B, T0) to fit the non-switch trials. Themajority
of the parameters accounted for the sensitivities of the three facial
features in each rule, and by averaging the fluctuations of the three
features, the model could be reduced to four parameters (k1, k2, B, T0;
one sensitivity parameter for each task context). This reduced model
performed equally well in fitting the behavioral data and yielded
similar results, except that it did not account for feature sensitivities.
Nevertheless, we used the 8-parameter model for the main results to
conform to our previous study40. The model had the same bound
height (B) and non-decision time (T0) in the two contexts. This was
justified by the fact that the participants had similar psychometric and
chronometric functions in both contexts (Supplementary Fig. 1a,b).

We fitted the model to the participants’ choices and RT distribu-
tions usingmaximum likelihood estimation. Given a set of parameters,
the stimulus fluctuations in each trial were used to calculate the RT
distributions of the two choices according to the aforementioned
model formulation. From these distributions, we derived the like-
lihood of observing the participants’ choices and RTs. Summing the
likelihoods across all the trials yielded the total likelihood of the
parameter set. We used a simplex search method (fminsearch in
MATLAB) to determine the parameter set thatmaximized the summed
likelihood. To avoid local maxima, we repeated the fitting process

using multiple initial parameter sets and selected the largest overall
likelihood as the final result. Fitting was performed for each partici-
pant, and included trials with all stimulus strengths. The fitting curves
shown in Figures 3 and 4 represent the averages across the partici-
pants. The fitting performance of the model was quantified using the
coefficient of determination (R2) for the joint distributions of choices
and RTs. For each morph level, we generated the RT distribution for
each choice (bin size, 100 ms) and computed R2 between the data and
model outputs after concatenating the bins of all morph levels and
choices.

The reduction in initial sensory weighting in switch trials
To account for the reduced effect of initial stimulus fluctuations in the
switch trials (Fig. 3a), we added a dynamic sensory weighting function
to the drift-diffusionmodel (Fig. 3c)39,82. Assuming that sensory weight
drops after a task switch and recovers gradually during stimulus pre-
sentation, we modeled the sensory weight at each time t (w(t)) in the
switch trials as a ramp function:

wðtÞ= winit + ð1�winitÞ=trecover � t, t < trecover
1, t ≥ trecover

�
ð14Þ

where winit is the initial value and trecover is the time required for the
weight to return to baseline. Thisweightingwas constant in non-switch
trials.

Sensory weighting can affect evidence accumulation in two ways.
First, it canmodulate only the signal component (i.e., drift rate) of the
accumulation. This can be formulated by extending Eq. (11) as:

vðtÞ=
Z t

0
wðτÞ � μðτÞ+ηðτÞdτ ð15Þ

Second, it can modulate the diffusion noise along with the drift rate:

vðtÞ=
Z t

0
wðτÞ � μðτÞ+ηðτÞ½ �dτ ð16Þ

These two forms make different assumptions regarding the noise
source. If noise arises during the accumulation process, the weighting
function does not affect the noise (Eq. (15)), but if noise arises in the
sensory process or in the process of converting sensory information
into evidence, weighting can also be applied to the noise (Eq. (16)). In
Supplementary Fig. 3, we tested both forms and found that the latter
explained the behavioral data well. This is consistent with previous
findings that noise in perceptual decision making is largely due to
sensory or inference processes83–85. Therefore, we used the latter form
in our main results.

To fit this model to the switch trials, we changed only the para-
meters for weight reduction (winit, trecover) during the maximum like-
lihood estimation for individual participants. All other parameters
were fixed at the values fitted to the non-switch trials. This poses
strong constraints on the model because only two parameters were
used to account for behavioral changes in the switch trials. We also
confirmed that the model parameters converged to similar values
when all parameters were simultaneously fitted to the switch trial data.

The above formalism (Eq. (14)) assumed a linear recovery of
sensory weight, but we found that different forms of recovery fitted
the data similarly well. For example, we examined an exponential
recovery function:

wðtÞ= 1� ð1�winitÞ � expð�t=trecoverÞ ð17Þ

Themean BIC of this exponentialmodel across participants was 14,515,
whereas the mean BIC of our main model was 14,516. Thus, the exact
form of the recovery function was not critical in our model.
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Alternative models
To examine whether other mechanisms could explain the observed
switch costs, we simulated a variety of alternative models. Because
sensitivity (k), boundheight (B), andnon-decision time (T0) in the drift-
diffusion model affect RTs, we first examined whether any of these
parameters accounted for the data in the switch trials. Similar to the
model with initial weight reduction, we started with the model para-
meters fitted to the non-switch trials, and then allowed the model to
adjust these parameters to fit the switch trials using maximum like-
lihood estimation (non-decision time: Fig. 4a–c; sensitivity and bound
height: Supplementary Fig. 4c-e).

We also tested whether a leak in evidence accumulation explains
the results (Supplementary Fig. 4b), because it increases RTs and leads
to lower kernel amplitudes early in trials owing to the gradual loss of
information over time. The drift diffusion model with a leak rate (λ)
becomes an Ornstein-Uhlenbeck process86, whose Fokker-Planck
equation is

∂pðv, tÞ
∂t

=
∂
∂v

ðλv� μðtÞÞ+0:5 ∂2

∂v2
σ2ðtÞ

" #
pðv, tÞ ð18Þ

A larger leak rate indicates a greater loss of information over time.
To further examine whether task preparation after receiving the

context cue interfered with evidence accumulation and led to the
observed switch cost, we extended our model to include task prepara-
tion time (Fig. 4d). This extendedmodel assumes that, after participants
fixated on the fixation point indicating a rule switch, they needed a fixed
amount of time (modeled as a Gaussian distribution with mean Pm and
SD Psd) to prepare for the switch. Since evidence accumulation starts
only after this preparation time, an early period of the stimulus
sequence does not influence the participants’ decisions if this period
overlaps with the preparation time. The key difference from the main
model is that the duration of this ineffective stimulus perioddepends on
the CSI, which varied across trials in our task. Themodel was allowed to
adjust Pm to fit the switch trials using the same maximum likelihood
estimation. The SD, Psd, was maintained at one-third of Pm, because we
found that Psd takes an extremely large value when fitted as a free
parameter to account for the switch cost in trials with long CSIs, making
the model inappropriate as a hypothesis for task preparation.

We compared the performances of all fitted models using Baye-
sian information criterion (BIC) (Fig. 4g), which was calculated based
on the log-likelihood of all trials and participants. ΔBIC in Fig. 4g are
thedifferences in BICbetween alternativemodels andourmainmodel,
and the positive values indicate poorer fit performances of the alter-
native models.

Generating model psychophysical kernels and RT distributions
Because the above model formulation could specify choices and RTs,
but not psychophysical kernels, we relied on Monte Carlo simulations
to estimate the model kernels. We created 105 simulated trials with 0-
12%morph levelswith the samemorphfluctuationparameters as in the
main task (SD, 20%), and generated the responses of the fitted models
to these simulated stimulus patterns. We then used the model choices
and RTs to calculate their psychophysical kernels, as we did for the
human data (thick gray lines in Figs. 3f-g, 4c, and 4e). Thus, the model
kernels were not directly fitted to the participants’ kernels, but were
generated from an independent set of stimulus fluctuations, making
the comparison of data and models informative. Similarly, the RT
distributions of the models (Fig. 3e) were generated from simulations
with an independent set of morph fluctuations to ensure an accurate
comparison of the data and models.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw psychophysical data generated in this study have been
deposited on Zenodo at https://doi.org/10.5281/zenodo.1416258087.

Code availability
The codes for behavioral analysis in this study are available on Zenodo
at https://doi.org/10.5281/zenodo.1416258087.
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